1
|
Zhou Y, Zhou J, Cai X, Ge S, Sang S, Yang Y, Zhang B, Deng S. Integrating 18F-FDG PET/CT radiomics and body composition for enhanced prognostic assessment in patients with esophageal cancer. BMC Cancer 2024; 24:1402. [PMID: 39543534 PMCID: PMC11566154 DOI: 10.1186/s12885-024-13157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND This study aimed to develop a predictive model utilizing radiomics and body composition features derived from 18F-FDG PET/CT scans to forecast progression-free survival (PFS) and overall survival (OS) outcomes in patients with esophageal squamous cell carcinoma (ESCC). METHODS We analyzed data from 91 patients who underwent baseline 18F-FDG PET/CT imaging. Radiomic features extracted from PET and CT images and subsequent radiomics scores (Rad-scores) were calculated. Body composition metrics were also quantified, including muscle and fat distribution at the L3 level from CT scans. Multiparametric survival models were constructed using Cox regression analysis, and their performance was assessed using the area under the time-dependent receiver operating characteristic (ROC) curve (AUC) and concordance index (C-index). RESULTS Multivariate analysis identified Rad-scorePFS (P = 0.003), sarcopenia (P < 0.001), and visceral adipose tissue index (VATI) (P < 0.001) as independent predictors of PFS. For OS, Rad-scoreOS (P = 0.001), sarcopenia (P = 0.002), VATI (P = 0.037), stage (P = 0.042), and body mass index (BMI) (P = 0.008) were confirmed as independent prognostic factors. Integration of the Rad-score with clinical variables and body composition parameters enhanced predictive accuracy, yielding C-indices of 0.810 (95% CI: 0.737-0.884) for PFS and 0.806 (95% CI: 0.720-0.891) for OS. CONCLUSIONS This study underscored the potential of combining Rad-score with clinical and body composition data to refine prognostic assessment in ESCC patients.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jin Zhou
- Department of Nuclear Medicine, Shuyang Hospital Affiliated to Medical College of Yangzhou University, Suqian, China
| | - Xiaowei Cai
- Department of Nuclear Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, 621099, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yi Yang
- Department of Nuclear Medicine, Affiliated Hospital of Medical School, Suzhou Hospital, Nanjing University, Suzhou, China.
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, 621099, China.
| |
Collapse
|
2
|
Jia PF, Li YR, Wang LY, Lu XR, Guo X. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances. Eur J Radiol 2024; 177:111577. [PMID: 38905802 DOI: 10.1016/j.ejrad.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE This scoping review aimed to understand the advances in radiomics in esophagogastric junction (EGJ) cancer and assess the current status of radiomics in EGJ cancer. METHODS We conducted systematic searches of PubMed, Embase, and Web of Science databases from January 18, 2012, to January 15, 2023, to identify radiomics articles related to EGJ cancer. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies using the Radiomics Quality Score (RQS) and the METhodological RadiomICs Score (METRICS) tool, respectively. RESULTS A total of 120 articles were retrieved from the three databases, and after screening, only six papers met the inclusion criteria. These studies investigated the role of radiomics in differentiating adenocarcinoma from squamous carcinoma, diagnosing T-stage, evaluating HER2 overexpression, predicting response to neoadjuvant therapy, and prognosis in EGJ cancer. The median score percentage of RQS was 34.7% (range from 22.2% to 38.9%). The median score percentage of METRICS was 71.2% (range from 58.2% to 84.9%). CONCLUSION Although there is a considerable difference between the RQS and METRICS scores of the included literature, we believe that the research value of radiomics in EGJ cancer has been revealed. In the future, while actively exploring more diagnostic, prognostic, and biological correlation studies in EGJ cancer, greater emphasis should be placed on the standardization and clinical application of radiomics.
Collapse
Affiliation(s)
- Ping-Fan Jia
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yu-Ru Li
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lu-Yao Wang
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiao-Rui Lu
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xing Guo
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China.
| |
Collapse
|
3
|
Bao Z, Du J, Zheng Y, Guo Q, Ji R. Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review. Front Oncol 2024; 14:1363812. [PMID: 38601765 PMCID: PMC11004479 DOI: 10.3389/fonc.2024.1363812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background Artificial intelligence (AI) models, clinical models (CM), and the integrated model (IM) are utilized to evaluate the response to neoadjuvant chemotherapy (NACT) in patients diagnosed with gastric cancer. Objective The objective is to identify the diagnostic test of the AI model and to compare the accuracy of AI, CM, and IM through a comprehensive summary of head-to-head comparative studies. Methods PubMed, Web of Science, Cochrane Library, and Embase were systematically searched until September 5, 2023, to compile English language studies without regional restrictions. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria. Forest plots were utilized to illustrate the findings of diagnostic accuracy, while Hierarchical Summary Receiver Operating Characteristic curves were generated to estimate sensitivity (SEN) and specificity (SPE). Meta-regression was applied to analyze heterogeneity across the studies. To assess the presence of publication bias, Deeks' funnel plot and an asymmetry test were employed. Results A total of 9 studies, comprising 3313 patients, were included for the AI model, with 7 head-to-head comparative studies involving 2699 patients. Across the 9 studies, the pooled SEN for the AI model was 0.75 (95% confidence interval (CI): 0.66, 0.82), and SPE was 0.77 (95% CI: 0.69, 0.84). Meta-regression was conducted, revealing that the cut-off value, approach to predicting response, and gold standard might be sources of heterogeneity. In the head-to-head comparative studies, the pooled SEN for AI was 0.77 (95% CI: 0.69, 0.84) with SPE at 0.79 (95% CI: 0.70, 0.85). For CM, the pooled SEN was 0.67 (95% CI: 0.57, 0.77) with SPE at 0.59 (95% CI: 0.54, 0.64), while for IM, the pooled SEN was 0.83 (95% CI: 0.79, 0.86) with SPE at 0.69 (95% CI: 0.56, 0.79). Notably, there was no statistical difference, except that IM exhibited higher SEN than AI, while maintaining a similar level of SPE in pairwise comparisons. In the Receiver Operating Characteristic analysis subgroup, the CT-based Deep Learning (DL) subgroup, and the National Comprehensive Cancer Network (NCCN) guideline subgroup, the AI model exhibited higher SEN but lower SPE compared to the IM. Conversely, in the training cohort subgroup and the internal validation cohort subgroup, the AI model demonstrated lower SEN but higher SPE than the IM. The subgroup analysis underscored that factors such as the number of cohorts, cohort type, cut-off value, approach to predicting response, and choice of gold standard could impact the reliability and robustness of the results. Conclusion AI has demonstrated its viability as a tool for predicting the response of GC patients to NACT Furthermore, CT-based DL model in AI was sensitive to extract tumor features and predict the response. The results of subgroup analysis also supported the above conclusions. Large-scale rigorously designed diagnostic accuracy studies and head-to-head comparative studies are anticipated. Systematic review registration PROSPERO, CRD42022377030.
Collapse
Affiliation(s)
- Zhixian Bao
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Xi’an NO.1 Hospital, Xi’an, Shaanxi, China
| | - Jie Du
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Rai HM, Yoo J, Atif Moqurrab S, Dashkevych S. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets. MEASUREMENT 2024; 225:114059. [DOI: 10.1016/j.measurement.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
5
|
Liu C, Li L, Chen X, Huang C, Wang R, Liu Y, Gao J. Intratumoral and peritumoral radiomics predict pathological response after neoadjuvant chemotherapy against advanced gastric cancer. Insights Imaging 2024; 15:23. [PMID: 38270724 PMCID: PMC10811314 DOI: 10.1186/s13244-023-01584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To investigate whether intratumoral and peritumoral radiomics may predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. METHODS Clinical, pathological, and CT data from 231 patients with advanced gastric cancer who underwent neoadjuvant chemotherapy at our hospital between July 2014 and February 2022 were retrospectively collected. Patients were randomly divided into a training group (n = 161) and a validation group (n = 70). The support vector machine classifier was used to establish radiomics models. A clinical model was established based on the selected clinical indicators. Finally, the radiomics and clinical models were combined to generate a radiomics-clinical model. ROC analyses were used to evaluate the prediction efficiency for each model. Calibration curves and decision curves were used to evaluate the optimal model. RESULTS A total of 91 cases were recorded with good response and 140 with poor response. The radiomics model demonstrated that the AUC was higher in the combined model than in the intratumoral and peritumoral models (training group: 0.949, 0.943, and 0.846, respectively; validation group: 0.815, 0.778, and 0.701, respectively). Age, Borrmann classification, and Lauren classification were used to construct the clinical model. Among the radiomics-clinical models, the combined-clinical model showed the highest AUC (training group: 0.960; validation group: 0.843), which significantly improved prediction efficiency. CONCLUSION The peritumoral model provided additional value in the evaluation of pathological response after neoadjuvant chemotherapy against advanced gastric cancer, and the combined-clinical model showed the highest predictive efficiency. CRITICAL RELEVANCE STATEMENT Intratumoral and peritumoral radiomics can noninvasively predict the pathological response against advanced gastric cancer after neoadjuvant chemotherapy to guide early treatment decision and provide individual treatment for patients. KEY POINTS 1. Radiomics can predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. 2. Peritumoral radiomics has additional predictive value. 3. Radiomics-clinical models can guide early treatment decisions and improve patient prognosis.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yiyang Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Chen X, Yu Q, Peng J, He Z, Li Q, Ning Y, Gu J, Lv F, Jiang H, Xie K. A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma. Acad Radiol 2023; 30:3022-3031. [PMID: 37777428 DOI: 10.1016/j.acra.2023.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 10/02/2023]
Abstract
RATIONALE AND OBJECTIVES Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists. MATERIALS AND METHODS Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging. RESULTS The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both). CONCLUSION The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
Collapse
Affiliation(s)
- Xinwei Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.).
| | - Zhiyang He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Quanjiang Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Youquan Ning
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Jinming Gu
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China (J.G.)
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Huan Jiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| | - Kai Xie
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (X.C., Q.Y., J.P., Z.H., Q.L., Y.N., F.L., H.J., K.X.)
| |
Collapse
|
7
|
Jiang L, Guo S, Zhao Y, Cheng Z, Zhong X, Zhou P. Predicting Extrathyroidal Extension in Papillary Thyroid Carcinoma Using a Clinical-Radiomics Nomogram Based on B-Mode and Contrast-Enhanced Ultrasound. Diagnostics (Basel) 2023; 13:diagnostics13101734. [PMID: 37238217 DOI: 10.3390/diagnostics13101734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid cancer. PTC patients with extrathyroidal extension (ETE) are associated with poor prognoses. The preoperative accurate prediction of ETE is crucial for helping the surgeon decide on the surgical plan. This study aimed to establish a novel clinical-radiomics nomogram based on B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) for the prediction of ETE in PTC. A total of 216 patients with PTC between January 2018 and June 2020 were collected and divided into the training set (n = 152) and the validation set (n = 64). The least absolute shrinkage and selection operator (LASSO) algorithm was applied for radiomics feature selection. Univariate analysis was performed to find clinical risk factors for predicting ETE. The BMUS Radscore, CEUS Radscore, clinical model, and clinical-radiomics model were established using multivariate backward stepwise logistic regression (LR) based on BMUS radiomics features, CEUS radiomics features, clinical risk factors, and the combination of those features, respectively. The diagnostic efficacy of the models was assessed using receiver operating characteristic (ROC) curves and the DeLong test. The model with the best performance was then selected to develop a nomogram. The results show that the clinical-radiomics model, which is constructed by age, CEUS-reported ETE, BMUS Radscore, and CEUS Radscore, showed the best diagnostic efficiency in both the training set (AUC = 0.843) and validation set (AUC = 0.792). Moreover, a clinical-radiomics nomogram was established for easier clinical practices. The Hosmer-Lemeshow test and the calibration curves demonstrated satisfactory calibration. The decision curve analysis (DCA) showed that the clinical-radiomics nomogram had substantial clinical benefits. The clinical-radiomics nomogram constructed from the dual-modal ultrasound can be exploited as a promising tool for the pre-operative prediction of ETE in PTC.
Collapse
Affiliation(s)
- Liqing Jiang
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shiyan Guo
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yongfeng Zhao
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinyu Zhong
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ping Zhou
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Tan X, Yang X, Hu S, Ge Y, Wu Q, Wang J, Sun Z. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:49-61. [PMID: 36314190 DOI: 10.3233/xst-221291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE To investigate the feasibility of predicting the early response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on CT radiomics nomogram before treatment. MATERIALS AND METHODS The clinicopathological data and pre-treatment portal venous phase CT images of 180 consecutive AGC patients who received 3 cycles of NAC are retrospectively analyzed. They are randomly divided into training set (n = 120) and validation set (n = 60) and are categorized into effective group (n = 83) and ineffective group (n = 97) according to RECIST 1.1. Clinicopathological features are compared between two groups using Chi-Squared test. CT radiomic features of region of interest (ROI) for gastric tumors are extracted, filtered and minimized to select optimal features and develop radiomics model to predict the response to NAC using Pyradiomics software. Furthermore, a nomogram model is constructed with the radiomic and clinicopathological features via logistic regression analysis. The receiver operating characteristic (ROC) curve analysis is used to evaluate model performance. Additionally, the calibration curve is used to test the agreement between prediction probability of the nomogram and actual clinical findings, and the decision curve analysis (DCA) is performed to assess the clinical usage of the nomogram model. RESULTS Four optimal radiomic features are selected to construct the radiomics model with the areas under ROC curve (AUC) of 0.754 and 0.743, sensitivity of 0.732 and 0.750, specificity of 0.729 and 0.708 in the training set and validation set, respectively. The nomogram model combining the radiomic feature with 2 clinicopathological features (Lauren type and clinical stage) results in AUCs of 0.841 and 0.838, sensitivity of 0.847 and 0.804, specificity of 0.771 and 0.794 in the training set and validation set, respectively. The calibration curve generates a concordance index of 0.912 indicating good agreement of the prediction results between the nomogram model and the actual clinical observation results. DCA shows that patients can receive higher net benefits within the threshold probability range from 0 to 1.0 in the nomogram model than in the radiomics model. CONCLUSION CT radiomics nomogram is a potential useful tool to assist predicting the early response to NAC for AGC patients before treatment.
Collapse
Affiliation(s)
- Xiaoying Tan
- Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Xiao Yang
- Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Qiong Wu
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jun Wang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Zongqiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| |
Collapse
|
9
|
Wu S, Wei Y, Li H, Zhou C, Chen T, Zhu J, Liu L, Wu S, Ma F, Ye Z, Deng G, Yao Y, Fan B, Liao S, Huang S, Sun X, Chen L, Guo H, Chen W, Zhan X, Liu C. A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors. Infect Drug Resist 2022; 15:7327-7338. [PMID: 36536861 PMCID: PMC9758984 DOI: 10.2147/idr.s388868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation (n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score (Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis. RESULTS A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics (AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The discriminative performance of the model is well validated in the test cohort (AUC=0.877). CONCLUSION The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could be helpful for clinical decision-making.
Collapse
Affiliation(s)
- Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yating Wei
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hao Li
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Lu Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Siling Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Fengzhi Ma
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guobing Deng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuanlin Yao
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Binguang Fan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shian Liao
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shengsheng Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xuhua Sun
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Liyi Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hao Guo
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Wuhua Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|