1
|
Chouvarda I, Colantonio S, Verde ASC, Jimenez-Pastor A, Cerdá-Alberich L, Metz Y, Zacharias L, Nabhani-Gebara S, Bobowicz M, Tsakou G, Lekadir K, Tsiknakis M, Martí-Bonmati L, Papanikolaou N. Differences in technical and clinical perspectives on AI validation in cancer imaging: mind the gap! Eur Radiol Exp 2025; 9:7. [PMID: 39812924 PMCID: PMC11735720 DOI: 10.1186/s41747-024-00543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation. RELEVANCE STATEMENT: This study recognised current gaps in understanding and applying AI validation strategies in cancer imaging and helped promote trust and adoption for interdisciplinary teams of technical and clinical researchers. KEY POINTS: Clinical and technical researchers emphasise interpretability, external validation with diverse data, and bias awareness in AI validation for cancer imaging. In cancer imaging AI research, clinical researchers prioritise explainability, while technical researchers focus on transparency and traceability, and see potential in synthetic datasets. Researchers advocate for greater homogenisation of AI validation practices in cancer imaging.
Collapse
Affiliation(s)
- Ioanna Chouvarda
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Sara Colantonio
- Institute of Information Science and Technologies of the National Research Council of Italy, Pisa, Italy
| | - Ana S C Verde
- Computational Clinical Imaging Group (CCIG), Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Leonor Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Yannick Metz
- Data Analysis and Visualization, University of Konstanz, Konstanz, Germany
| | | | - Shereen Nabhani-Gebara
- Faculty of Health, Science, Social Care & Education, Kingston University London, London, UK
| | - Maciej Bobowicz
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Gianna Tsakou
- Research and Development Lab, Gruppo Maggioli Greek Branch, Maroussi, Greece
| | - Karim Lekadir
- Departament de Matemàtiques i Informàtica, Artificial Intelligence in Medicine Lab (BCN-AIM), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Luis Martí-Bonmati
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
- Radiology Department, La Fe Polytechnic and University Hospital and Health Research Institute, Valencia, Spain
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group (CCIG), Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
2
|
Russo L, Bottazzi S, Kocak B, Zormpas-Petridis K, Gui B, Stanzione A, Imbriaco M, Sala E, Cuocolo R, Ponsiglione A. Evaluating the quality of radiomics-based studies for endometrial cancer using RQS and METRICS tools. Eur Radiol 2025; 35:202-214. [PMID: 39014086 PMCID: PMC11632020 DOI: 10.1007/s00330-024-10947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE To assess the methodological quality of radiomics-based models in endometrial cancer using the radiomics quality score (RQS) and METhodological radiomICs score (METRICS). METHODS We systematically reviewed studies published by October 30th, 2023. Inclusion criteria were original radiomics studies on endometrial cancer using CT, MRI, PET, or ultrasound. Articles underwent a quality assessment by novice and expert radiologists using RQS and METRICS. The inter-rater reliability for RQS and METRICS among radiologists with varying expertise was determined. Subgroup analyses were performed to assess whether scores varied according to study topic, imaging technique, publication year, and journal quartile. RESULTS Sixty-eight studies were analysed, with a median RQS of 11 (IQR, 9-14) and METRICS score of 67.6% (IQR, 58.8-76.0); two different articles reached maximum RQS of 19 and METRICS of 90.7%, respectively. Most studies utilised MRI (82.3%) and machine learning methods (88.2%). Characterisation and recurrence risk stratification were the most explored outcomes, featured in 35.3% and 19.1% of articles, respectively. High inter-rater reliability was observed for both RQS (ICC: 0.897; 95% CI: 0.821, 0.946) and METRICS (ICC: 0.959; 95% CI: 0.928, 0.979). Methodological limitations such as lack of external validation suggest areas for improvement. At subgroup analyses, no statistically significant difference was noted. CONCLUSIONS Whilst using RQS, the quality of endometrial cancer radiomics research was apparently unsatisfactory, METRICS depicts a good overall quality. Our study highlights the need for strict compliance with quality metrics. Adhering to these quality measures can increase the consistency of radiomics towards clinical application in the pre-operative management of endometrial cancer. CLINICAL RELEVANCE STATEMENT Both the RQS and METRICS can function as instrumental tools for identifying different methodological deficiencies in endometrial cancer radiomics research. However, METRICS also reflected a focus on the practical applicability and clarity of documentation. KEY POINTS The topic of radiomics currently lacks standardisation, limiting clinical implementation. METRICS scores were generally higher than the RQS, reflecting differences in the development process and methodological content. A positive trend in METRICS score may suggest growing attention to methodological aspects in radiomics research.
Collapse
Affiliation(s)
- Luca Russo
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bottazzi
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey
| | - Konstantinos Zormpas-Petridis
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Benedetta Gui
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evis Sala
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
El-Gedaily M, Euler A, Guldimann M, Schulz B, Aghapour Zangeneh F, Prause A, Kubik-Huch RA, Niemann T. Phantom evaluation of feasibility and applicability of artificial intelligence based pulmonary nodule detection in chest radiographs. Medicine (Baltimore) 2024; 103:e40485. [PMID: 39809217 PMCID: PMC11596649 DOI: 10.1097/md.0000000000040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection. Computed tomography (CT) was performed for correlation. Ground truth (detectability) was established through a human consensus reading. Overall sensitivity and specificity of 0.978 and 0.812, respectively, were achieved for nodule detection. The false-positive rate was low with an overall rate of 0.19. The overall accuracy was calculated as 0.84 for all nodules. While most studies evaluating AI performance in the detection of pulmonary nodules have evaluated a mix of varying nodules, these are the first results of a controlled phantom-based study using a balanced number of nodules of all sizes and densities. To increase the radiologist's diagnostic performance and minimize the risk of decision bias, such algorithms have an obvious benefit in a clinical scenario.
Collapse
Affiliation(s)
- Mona El-Gedaily
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
- Department of Radiology, Klinik Hirslanden, Zürich, Switzerland
| | - André Euler
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| | - Mike Guldimann
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| | - Bastian Schulz
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| | - Foroud Aghapour Zangeneh
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| | | | - Rahel A. Kubik-Huch
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| | - Tilo Niemann
- Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| |
Collapse
|
4
|
Giraldo-Roldán D, Dos Santos GC, Araújo ALD, Nakamura TCR, Pulido-Díaz K, Lopes MA, Santos-Silva AR, Kowalski LP, Moraes MC, Vargas PA. Deep Convolutional Neural Network for Accurate Classification of Myofibroblastic Lesions on Patch-Based Images. Head Neck Pathol 2024; 18:117. [PMID: 39466448 PMCID: PMC11519240 DOI: 10.1007/s12105-024-01723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE This study aimed to implement and evaluate a Deep Convolutional Neural Network for classifying myofibroblastic lesions into benign and malignant categories based on patch-based images. METHODS A Residual Neural Network (ResNet50) model, pre-trained with weights from ImageNet, was fine-tuned to classify a cohort of 20 patients (11 benign and 9 malignant cases). Following annotation of tumor regions, the whole-slide images (WSIs) were fragmented into smaller patches (224 × 224 pixels). These patches were non-randomly divided into training (308,843 patches), validation (43,268 patches), and test (42,061 patches) subsets, maintaining a 78:11:11 ratio. The CNN training was caried out for 75 epochs utilizing a batch size of 4, the Adam optimizer, and a learning rate of 0.00001. RESULTS ResNet50 achieved an accuracy of 98.97%, precision of 99.91%, sensitivity of 97.98%, specificity of 99.91%, F1 score of 98.94%, and AUC of 0.99. CONCLUSIONS The ResNet50 model developed exhibited high accuracy during training and robust generalization capabilities in unseen data, indicating nearly flawless performance in distinguishing between benign and malignant myofibroblastic tumors, despite the small sample size. The excellent performance of the AI model in separating such histologically similar classes could be attributed to its ability to identify hidden discriminative features, as well as to use a wide range of features and benefit from proper data preprocessing.
Collapse
Affiliation(s)
- Daniela Giraldo-Roldán
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
- Department of Oral Diagnosis, Oral Pathology Area Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, 13.414-903, Piracicaba, São Paulo, Brazil.
| | - Giovanna Calabrese Dos Santos
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | | | - Thaís Cerqueira Reis Nakamura
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | - Katya Pulido-Díaz
- Health Care Department, Oral Pathology and Medicine Master, Autonomous Metropolitan University, Mexico City, Mexico
| | - Marcio Ajudarte Lopes
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Alan Roger Santos-Silva
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, University of São Paulo Medical School (FMUSP), São Paulo, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Matheus Cardoso Moraes
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
5
|
Koochakpour K, Pant D, Westbye OS, Røst TB, Leventhal B, Koposov R, Clausen C, Skokauskas N, Nytrø Ø. Ability of clinical data to predict readmission in Child and Adolescent Mental Health Services. PeerJ Comput Sci 2024; 10:e2367. [PMID: 39650424 PMCID: PMC11622991 DOI: 10.7717/peerj-cs.2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/07/2024] [Indexed: 12/11/2024]
Abstract
This study addresses the challenge of predicting readmissions in Child and Adolescent Mental Health Services (CAMHS) by analyzing the predictability of readmissions over short, medium, and long term periods. Using health records spanning 35 years, which included 22,643 patients and 30,938 episodes of care, we focused on the episode of care as a central unit, defined as a referral-discharge cycle that incorporates assessments and interventions. Data pre-processing involved handling missing values, normalizing, and transforming data, while resolving issues related to overlapping episodes and correcting registration errors where possible. Readmission prediction was inferred from electronic health records (EHR), as this variable was not directly recorded. A binary classifier distinguished between readmitted and non-readmitted patients, followed by a multi-class classifier to categorize readmissions based on timeframes: short (within 6 months), medium (6 months - 2 years), and long (more than 2 years). Several predictive models were evaluated based on metrics like AUC, F1-score, precision, and recall, and the K-prototype algorithm was employed to explore similarities between episodes through clustering. The optimal binary classifier (Oversampled Gradient Boosting) achieved an AUC of 0.7005, while the multi-class classifier (Oversampled Random Forest) reached an AUC of 0.6368. The K-prototype resulted in three clusters as optimal (SI: 0.256, CI: 4473.64). Despite identifying relationships between care intensity, case complexity, and readmission risk, generalizing these findings proved difficult, partly because clinicians often avoid discharging patients likely to be readmitted. Overall, while this dataset offers insights into patient care and service patterns, predicting readmissions remains challenging, suggesting a need for improved analytical models that consider patient development, disease progression, and intervention effects.
Collapse
Affiliation(s)
- Kaban Koochakpour
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dipendra Pant
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Child and Adolescent Psychiatry, Clinic of Mental Health Care, St. Olav University Hospital, Trondheim, Norway
| | - Odd Sverre Westbye
- Department of Child and Adolescent Psychiatry, Clinic of Mental Health Care, St. Olav University Hospital, Trondheim, Norway
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Brox Røst
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Vivit AS, Trondheim, Norway
| | | | - Roman Koposov
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU North), UiT The Arctic University of Norway, Tromsø, Norway
| | - Carolyn Clausen
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Norbert Skokauskas
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øystein Nytrø
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Child and Adolescent Psychiatry, Clinic of Mental Health Care, St. Olav University Hospital, Trondheim, Norway
- Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Tran K, Ginzburg D, Hong W, Attenberger U, Ko HS. Post-radiotherapy stage III/IV non-small cell lung cancer radiomics research: a systematic review and comparison of CLEAR and RQS frameworks. Eur Radiol 2024; 34:6527-6543. [PMID: 38625613 PMCID: PMC11399214 DOI: 10.1007/s00330-024-10736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Lung cancer, the second most common cancer, presents persistently dismal prognoses. Radiomics, a promising field, aims to provide novel imaging biomarkers to improve outcomes. However, clinical translation faces reproducibility challenges, despite efforts to address them with quality scoring tools. OBJECTIVE This study had two objectives: 1) identify radiomics biomarkers in post-radiotherapy stage III/IV nonsmall cell lung cancer (NSCLC) patients, 2) evaluate research quality using the CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score) frameworks, and formulate an amalgamated CLEAR-RQS tool to enhance scientific rigor. MATERIALS AND METHODS A systematic literature review (Jun-Aug 2023, MEDLINE/PubMed/SCOPUS) was conducted concerning stage III/IV NSCLC, radiotherapy, and radiomic features (RF). Extracted data included study design particulars, such as sample size, radiotherapy/CT technique, selected RFs, and endpoints. CLEAR and RQS were merged into a CLEAR-RQS checklist. Three readers appraised articles utilizing CLEAR, RQS, and CLEAR-RQS metrics. RESULTS Out of 871 articles, 11 met the inclusion/exclusion criteria. The Median cohort size was 91 (range: 10-337) with 9 studies being single-center. No common RF were identified. The merged CLEAR-RQS checklist comprised 61 items. Most unreported items were within CLEAR's "methods" and "open-source," and within RQS's "phantom-calibration," "registry-enrolled prospective-trial-design," and "cost-effective-analysis" sections. No study scored above 50% on RQS. Median CLEAR scores were 55.74% (32.33/58 points), and for RQS, 17.59% (6.3/36 points). CLEAR-RQS article ranking fell between CLEAR and RQS and aligned with CLEAR. CONCLUSION Radiomics research in post-radiotherapy stage III/IV NSCLC exhibits variability and frequently low-quality reporting. The formulated CLEAR-RQS checklist may facilitate education and holds promise for enhancing radiomics research quality. CLINICAL RELEVANCE STATEMENT Current radiomics research in the field of stage III/IV postradiotherapy NSCLC is heterogenous, lacking reproducibility, with no identified imaging biomarker. Radiomics research quality assessment tools may enhance scientific rigor and thereby facilitate radiomics translation into clinical practice. KEY POINTS There is heterogenous and low radiomics research quality in postradiotherapy stage III/IV nonsmall cell lung cancer. Barriers to reproducibility are small cohort size, nonvalidated studies, missing technical parameters, and lack of data, code, and model sharing. CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score), and the amalgamated CLEAR-RQS tool are useful frameworks for assessing radiomics research quality and may provide a valuable resource for educational purposes in the field of radiomics.
Collapse
Affiliation(s)
- Kevin Tran
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Daniel Ginzburg
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Wei Hong
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Hyun Soo Ko
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia.
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, 305 Grattan St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Cai Y, Cai YQ, Tang LY, Wang YH, Gong M, Jing TC, Li HJ, Li-Ling J, Hu W, Yin Z, Gong DX, Zhang GW. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Med 2024; 22:56. [PMID: 38317226 PMCID: PMC10845808 DOI: 10.1186/s12916-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. METHODS PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). RESULTS In 20,887 screened references, 79 articles (82.5% in 2017-2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development (n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5-52,000, median 21) and large-span sample size (range 80-3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as "recommended"; however, 281 and 187 were "not recommended" and "warning," respectively. CONCLUSION AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.
Collapse
Affiliation(s)
- Yue Cai
- China Medical University, Shenyang, 110122, China
| | - Yu-Qing Cai
- China Medical University, Shenyang, 110122, China
| | - Li-Ying Tang
- China Medical University, Shenyang, 110122, China
| | - Yi-Han Wang
- China Medical University, Shenyang, 110122, China
| | - Mengchun Gong
- Digital Health China Co. Ltd, Beijing, 100089, China
| | - Tian-Ci Jing
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Hui-Jun Li
- Shenyang Medical & Film Science and Technology Co. Ltd., Shenyang, 110001, China
- Enduring Medicine Smart Innovation Research Institute, Shenyang, 110001, China
| | - Jesse Li-Ling
- Institute of Genetic Medicine, School of Life Science, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China
| | - Wei Hu
- Bayi Orthopedic Hospital, Chengdu, 610017, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Da-Xin Gong
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| | - Guang-Wei Zhang
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| |
Collapse
|
8
|
Malik M, Chong B, Fernandez J, Shim V, Kasabov NK, Wang A. Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review. Bioengineering (Basel) 2024; 11:86. [PMID: 38247963 PMCID: PMC10813717 DOI: 10.3390/bioengineering11010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Stroke is a medical condition that affects around 15 million people annually. Patients and their families can face severe financial and emotional challenges as it can cause motor, speech, cognitive, and emotional impairments. Stroke lesion segmentation identifies the stroke lesion visually while providing useful anatomical information. Though different computer-aided software are available for manual segmentation, state-of-the-art deep learning makes the job much easier. This review paper explores the different deep-learning-based lesion segmentation models and the impact of different pre-processing techniques on their performance. It aims to provide a comprehensive overview of the state-of-the-art models and aims to guide future research and contribute to the development of more robust and effective stroke lesion segmentation models.
Collapse
Affiliation(s)
- Mishaim Malik
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
| | - Benjamin Chong
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
- Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
| | - Nikola Kirilov Kasabov
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
- Knowledge Engineering and Discovery Research Innovation, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- Institute for Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Knowledge Engineering Consulting Ltd., Auckland 1071, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand; (M.M.); (B.C.); (N.K.K.)
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Medical Imaging Research Centre, The University of Auckland, Auckland 1010, New Zealand
- Centre for Co-Created Ageing Research, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Kocak B, Akinci D'Antonoli T, Mercaldo N, Alberich-Bayarri A, Baessler B, Ambrosini I, Andreychenko AE, Bakas S, Beets-Tan RGH, Bressem K, Buvat I, Cannella R, Cappellini LA, Cavallo AU, Chepelev LL, Chu LCH, Demircioglu A, deSouza NM, Dietzel M, Fanni SC, Fedorov A, Fournier LS, Giannini V, Girometti R, Groot Lipman KBW, Kalarakis G, Kelly BS, Klontzas ME, Koh DM, Kotter E, Lee HY, Maas M, Marti-Bonmati L, Müller H, Obuchowski N, Orlhac F, Papanikolaou N, Petrash E, Pfaehler E, Pinto Dos Santos D, Ponsiglione A, Sabater S, Sardanelli F, Seeböck P, Sijtsema NM, Stanzione A, Traverso A, Ugga L, Vallières M, van Dijk LV, van Griethuysen JJM, van Hamersvelt RW, van Ooijen P, Vernuccio F, Wang A, Williams S, Witowski J, Zhang Z, Zwanenburg A, Cuocolo R. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 2024; 15:8. [PMID: 38228979 PMCID: PMC10792137 DOI: 10.1186/s13244-023-01572-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bettina Baessler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Anna E Andreychenko
- Laboratory for Digital Public Health Technologies, ITMO University, St. Petersburg, Russian Federation
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Federated Learning in Precision Medicine, Indiana University, Indianapolis, IN, USA
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Keno Bressem
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irene Buvat
- Institut Curie, Inserm, PSL University, Laboratory of Translational Imaging in Oncology, Orsay, France
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Leonid L Chepelev
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada
| | - Linda Chi Hang Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aydin Demircioglu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital , Essen, Germany
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Matthias Dietzel
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | | - Andrey Fedorov
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laure S Fournier
- Department of Radiology, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Paris, France
| | | | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Georgios Kalarakis
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Division of Radiology, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Medical School, University of Crete, Heraklion, Greece
| | - Brendan S Kelly
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
- Insight Centre for Data Analytics, UCD, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, Heraklion, Crete, Greece
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Sutton, UK
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Mario Maas
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Luis Marti-Bonmati
- Medical Imaging Department and Biomedical Imaging Research Group, Hospital Universitario y Politécnico La Fe and Health Research Institute, Valencia, Spain
| | - Henning Müller
- University of Applied Sciences of Western Switzerland (HES-SO Valais), Sierra, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UniGe), Geneva, Switzerland
| | - Nancy Obuchowski
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fanny Orlhac
- Institut Curie, Inserm, PSL University, Laboratory of Translational Imaging in Oncology, Orsay, France
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - Ekaterina Petrash
- Radiology department, Research Institute of Pediatric Oncology and Hematology n. a. L.A. Durnov, National Medical Research Center of Oncology n. a. N.N. Blokhin Ministry of Health of Russian Federation, Moscow, Russia
- Medical Department IRA-Labs, Moscow, Russia
| | - Elisabeth Pfaehler
- Institute for advanced simulation (IAS-8): Machine learning and data analytics, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Institute for Diagnostic and Interventional Radiology, Goethe-University Frankfurt Am Main, Frankfurt, Germany
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Sebastià Sabater
- Department of Radiation Oncology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Philipp Seeböck
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Traverso
- Department of Radiotherapy, Maastro Clinic, Maastricht, the Netherlands
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada
| | - Lisanne V van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Robbert W van Hamersvelt
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter van Ooijen
- Department of Radiotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Federica Vernuccio
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D), University of Palermo, Palermo, 90127, Italy
| | - Alan Wang
- Centre for Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stuart Williams
- Department of Radiology, Norfolk & Norwich University Hospital, Colney Lane, Norwich, Norfolk, UK
| | - Jan Witowski
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Zhongyi Zhang
- School of Information and Communication Technology, Griffith University, Nathan, Brisbane, Australia
| | - Alex Zwanenburg
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
10
|
Ko HS. Advancing radiomics research translation through a public database. Eur Radiol 2024; 34:433-435. [PMID: 37815606 DOI: 10.1007/s00330-023-10284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Hyun Soo Ko
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Akinci D'Antonoli T, Cuocolo R, Baessler B, Pinto Dos Santos D. Towards reproducible radiomics research: introduction of a database for radiomics studies. Eur Radiol 2024; 34:436-443. [PMID: 37572188 PMCID: PMC10791815 DOI: 10.1007/s00330-023-10095-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVES To investigate the model-, code-, and data-sharing practices in the current radiomics research landscape and to introduce a radiomics research database. METHODS A total of 1254 articles published between January 1, 2021, and December 31, 2022, in leading radiology journals (European Radiology, European Journal of Radiology, Radiology, Radiology: Artificial Intelligence, Radiology: Cardiothoracic Imaging, Radiology: Imaging Cancer) were retrospectively screened, and 257 original research articles were included in this study. The categorical variables were compared using Fisher's exact tests or chi-square test and numerical variables using Student's t test with relation to the year of publication. RESULTS Half of the articles (128 of 257) shared the model by either including the final model formula or reporting the coefficients of selected radiomics features. A total of 73 (28%) models were validated on an external independent dataset. Only 16 (6%) articles shared the data or used publicly available open datasets. Similarly, only 20 (7%) of the articles shared the code. A total of 7 (3%) articles both shared code and data. All collected data in this study is presented in a radiomics research database (RadBase) and could be accessed at https://github.com/EuSoMII/RadBase . CONCLUSION According to the results of this study, the majority of published radiomics models were not technically reproducible since they shared neither model nor code and data. There is still room for improvement in carrying out reproducible and open research in the field of radiomics. CLINICAL RELEVANCE STATEMENT To date, the reproducibility of radiomics research and open science practices within the radiomics research community are still very low. Ensuring reproducible radiomics research with model-, code-, and data-sharing practices will facilitate faster clinical translation. KEY POINTS • There is a discrepancy between the number of published radiomics papers and the clinical implementation of these published radiomics models. • The main obstacle to clinical implementation is the lack of model-, code-, and data-sharing practices. • In order to translate radiomics research into clinical practice, the radiomics research community should adopt open science practices.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Bettina Baessler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Doniselli FM, Pascuzzo R, Agrò M, Aquino D, Anghileri E, Farinotti M, Pollo B, Paterra R, Cuccarini V, Moscatelli M, DiMeco F, Sconfienza LM. Development of A Radiomic Model for MGMT Promoter Methylation Detection in Glioblastoma Using Conventional MRI. Int J Mol Sci 2023; 25:138. [PMID: 38203308 PMCID: PMC10778771 DOI: 10.3390/ijms25010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a molecular marker associated with a better response to chemotherapy in patients with glioblastoma (GB). Standard pre-operative magnetic resonance imaging (MRI) analysis is not adequate to detect MGMT promoter methylation. This study aims to evaluate whether the radiomic features extracted from multiple tumor subregions using multiparametric MRI can predict MGMT promoter methylation status in GB patients. This retrospective single-institution study included a cohort of 277 GB patients whose 3D post-contrast T1-weighted images and 3D fluid-attenuated inversion recovery (FLAIR) images were acquired using two MRI scanners. Three separate regions of interest (ROIs) showing tumor enhancement, necrosis, and FLAIR hyperintensities were manually segmented for each patient. Two machine learning algorithms (support vector machine (SVM) and random forest) were built for MGMT promoter methylation prediction from a training cohort (196 patients) and tested on a separate validation cohort (81 patients), based on a set of automatically selected radiomic features, with and without demographic variables (i.e., patients' age and sex). In the training set, SVM based on the selected radiomic features of the three separate ROIs achieved the best performances, with an average of 83.0% (standard deviation: 5.7%) for accuracy and 0.894 (0.056) for the area under the curve (AUC) computed through cross-validation. In the test set, all classification performances dropped: the best was obtained by SVM based on the selected features extracted from the whole tumor lesion constructed by merging the three ROIs, with 64.2% (95% confidence interval: 52.8-74.6%) accuracy and 0.572 (0.439-0.705) for AUC. The performances did not change when the patients' age and sex were included with the radiomic features into the models. Our study confirms the presence of a subtle association between imaging characteristics and MGMT promoter methylation status. However, further verification of the strength of this association is needed, as the low diagnostic performance obtained in this validation cohort is not sufficiently robust to allow clinically meaningful predictions.
Collapse
Affiliation(s)
- Fabio M. Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Massimiliano Agrò
- Post-Graduate School in Radiodiagnostics, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Elena Anghileri
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Mariangela Farinotti
- Neuroepidemiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
- Radiology Unit, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| |
Collapse
|
13
|
Zhong J, Xing Y, Lu J, Zhang G, Mao S, Chen H, Yin Q, Cen Q, Jiang R, Hu Y, Ding D, Ge X, Zhang H, Yao W. The endorsement of general and artificial intelligence reporting guidelines in radiological journals: a meta-research study. BMC Med Res Methodol 2023; 23:292. [PMID: 38093215 PMCID: PMC10717715 DOI: 10.1186/s12874-023-02117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Complete reporting is essential for clinical research. However, the endorsement of reporting guidelines in radiological journals is still unclear. Further, as a field extensively utilizing artificial intelligence (AI), the adoption of both general and AI reporting guidelines would be necessary for enhancing quality and transparency of radiological research. This study aims to investigate the endorsement of general reporting guidelines and those for AI applications in medical imaging in radiological journals, and explore associated journal characteristic variables. METHODS This meta-research study screened journals from the Radiology, Nuclear Medicine & Medical Imaging category, Science Citation Index Expanded of the 2022 Journal Citation Reports, and excluded journals not publishing original research, in non-English languages, and instructions for authors unavailable. The endorsement of fifteen general reporting guidelines and ten AI reporting guidelines was rated using a five-level tool: "active strong", "active weak", "passive moderate", "passive weak", and "none". The association between endorsement and journal characteristic variables was evaluated by logistic regression analysis. RESULTS We included 117 journals. The top-five endorsed reporting guidelines were CONSORT (Consolidated Standards of Reporting Trials, 58.1%, 68/117), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 54.7%, 64/117), STROBE (STrengthening the Reporting of Observational Studies in Epidemiology, 51.3%, 60/117), STARD (Standards for Reporting of Diagnostic Accuracy, 50.4%, 59/117), and ARRIVE (Animal Research Reporting of In Vivo Experiments, 35.9%, 42/117). The most implemented AI reporting guideline was CLAIM (Checklist for Artificial Intelligence in Medical Imaging, 1.7%, 2/117), while other nine AI reporting guidelines were not mentioned. The Journal Impact Factor quartile and publisher were associated with endorsement of reporting guidelines in radiological journals. CONCLUSIONS The general reporting guideline endorsement was suboptimal in radiological journals. The implementation of reporting guidelines for AI applications in medical imaging was extremely low. Their adoption should be strengthened to facilitate quality and transparency of radiological study reporting.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qingqing Cen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Run Jiang
- Department of Pharmacovigilance, Shanghai Hansoh BioMedical Co., Ltd., Shanghai, 201203, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
14
|
Kocak B, Chepelev LL, Chu LC, Cuocolo R, Kelly BS, Seeböck P, Thian YL, van Hamersvelt RW, Wang A, Williams S, Witowski J, Zhang Z, Pinto Dos Santos D. Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, reviewers, and readers from the Scientific Editorial Board of European Radiology. Eur Radiol 2023; 33:7556-7560. [PMID: 37358612 DOI: 10.1007/s00330-023-09768-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| | - Leonid L Chepelev
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| | - Brendan S Kelly
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Philipp Seeböck
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Robbert W van Hamersvelt
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alan Wang
- Centre for Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stuart Williams
- Department of Radiology, Norfolk & Norwich University Hospital, Norwich, UK
| | - Jan Witowski
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Institute for Diagnostic and Interventional Radiology, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
15
|
Walsh G, Stogiannos N, van de Venter R, Rainey C, Tam W, McFadden S, McNulty JP, Mekis N, Lewis S, O'Regan T, Kumar A, Huisman M, Bisdas S, Kotter E, Pinto dos Santos D, Sá dos Reis C, van Ooijen P, Brady AP, Malamateniou C. Responsible AI practice and AI education are central to AI implementation: a rapid review for all medical imaging professionals in Europe. BJR Open 2023; 5:20230033. [PMID: 37953871 PMCID: PMC10636340 DOI: 10.1259/bjro.20230033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 11/14/2023] Open
Abstract
Artificial intelligence (AI) has transitioned from the lab to the bedside, and it is increasingly being used in healthcare. Radiology and Radiography are on the frontline of AI implementation, because of the use of big data for medical imaging and diagnosis for different patient groups. Safe and effective AI implementation requires that responsible and ethical practices are upheld by all key stakeholders, that there is harmonious collaboration between different professional groups, and customised educational provisions for all involved. This paper outlines key principles of ethical and responsible AI, highlights recent educational initiatives for clinical practitioners and discusses the synergies between all medical imaging professionals as they prepare for the digital future in Europe. Responsible and ethical AI is vital to enhance a culture of safety and trust for healthcare professionals and patients alike. Educational and training provisions for medical imaging professionals on AI is central to the understanding of basic AI principles and applications and there are many offerings currently in Europe. Education can facilitate the transparency of AI tools, but more formalised, university-led training is needed to ensure the academic scrutiny, appropriate pedagogy, multidisciplinarity and customisation to the learners' unique needs are being adhered to. As radiographers and radiologists work together and with other professionals to understand and harness the benefits of AI in medical imaging, it becomes clear that they are faced with the same challenges and that they have the same needs. The digital future belongs to multidisciplinary teams that work seamlessly together, learn together, manage risk collectively and collaborate for the benefit of the patients they serve.
Collapse
Affiliation(s)
- Gemma Walsh
- Division of Midwifery & Radiography, City University of London, London, United Kingdom
| | | | | | - Clare Rainey
- School of Health Sciences, Ulster University, Derry~Londonderry, Northern Ireland
| | - Winnie Tam
- Division of Midwifery & Radiography, City University of London, London, United Kingdom
| | - Sonyia McFadden
- School of Health Sciences, Ulster University, Coleraine, United Kingdom
| | | | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia
| | - Sarah Lewis
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Tracy O'Regan
- The Society and College of Radiographers, London, United Kingdom
| | - Amrita Kumar
- Frimley Health NHS Foundation Trust, Frimley, United Kingdom
| | - Merel Huisman
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | - Cláudia Sá dos Reis
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Martí-Bonmatí L. Embracing critical thinking to enhance our practice. Insights Imaging 2023; 14:97. [PMID: 37222825 DOI: 10.1186/s13244-023-01435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Affiliation(s)
- Luis Martí-Bonmatí
- Medical Imaging Department and Biomedical Imaging Research Group, Hospital Universitario y Politécnico La Fe and Health Research Institute, Valencia, Spain.
| |
Collapse
|