1
|
Garg P, Chouhan N, Wander GS, Chandra P, Kashyap R. Simultaneous transcatheter dual valve replacement (mitral and tricuspid valves): a case report. Eur Heart J Case Rep 2023; 7:ytad344. [PMID: 37547370 PMCID: PMC10401318 DOI: 10.1093/ehjcr/ytad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/30/2022] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Background Structural valve dysfunction in bioprosthetic heart valves necessitates redo replacement procedure that are associated with high mortality and morbidity. The transcatheter valve-in-valve (VIV) approach has emerged as a preferred option for patients requiring redo procedures due to structural valve degeneration. We report from India the first case of the simultaneous transcatheter dual VIV implantation (mitral valve and tricuspid valves) in a high-surgical-risk patient. Case summary A 57-year-old female was presented with a history of rheumatic heart disease, post-mitral valve as well as tricuspid valve replacement (perimount 33 mm) 11 years back. Bioprosthetic heart valve was chosen probably due to limited life expectancy and compliance issues with monitoring of international normalised ratio (INR). She now presented with progressive dyspnoea, oedema, and palpitations (New York Heart Association Class III) for the last 6 months. The patient was scheduled for transcatheter dual valve replacement simultaneously. The procedure was successful with a favourable outcome, short hospital stays, and early recovery. Discussion This is the first case of simultaneous transcatheter dual valve replacement reported from India, which is fluoroscopically guided and supported by TEE. It is a valuable and considerable option for patients with failing bioprosthesis valves who are at increased peri-operative risk.
Collapse
Affiliation(s)
| | - Nagendra Chouhan
- Department of Cardiology, Medanta—The Medicity, CH Baktawar Singh Rd, Islampur Colony, Sector 38, Gurugram, Haryana 122001, India
| | - Gagandeep S Wander
- Department of Cardiology, Medanta—The Medicity, CH Baktawar Singh Rd, Islampur Colony, Sector 38, Gurugram, Haryana 122001, India
| | - Praveen Chandra
- Department of Cardiology, Medanta—The Medicity, CH Baktawar Singh Rd, Islampur Colony, Sector 38, Gurugram, Haryana 122001, India
| | | |
Collapse
|
2
|
Kostyunin AE, Glushkova TV, Lobov AA, Ovcharenko EA, Zainullina BR, Bogdanov LA, Shishkova DK, Markova VE, Asanov MA, Mukhamadiyarov RA, Velikanova EA, Akentyeva TN, Rezvova MA, Stasev AN, Evtushenko A, Barbarash LS, Kutikhin AG. Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure. J Am Heart Assoc 2022; 12:e028215. [PMID: 36565196 PMCID: PMC9973599 DOI: 10.1161/jaha.122.028215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix-degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement-driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil-derived MMP-8 and plasma-derived MMP-9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP-9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma-derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether-treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil- and plasma-derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.
Collapse
Affiliation(s)
- Alexander E. Kostyunin
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Tatiana V. Glushkova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Arseniy A. Lobov
- Department of Regenerative BiomedicineResearch Institute of CytologySt. PetersburgRussian Federation
| | - Evgeny A. Ovcharenko
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Bozhana R. Zainullina
- Centre for Molecular and Cell TechnologiesSt. Petersburg State University Research ParkSt. Petersburg State University, Universitetskaya EmbankmentSt. PetersburgRussian Federation
| | - Leo A. Bogdanov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Daria K. Shishkova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Victoria E. Markova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Maksim A. Asanov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Rinat A. Mukhamadiyarov
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Elena A. Velikanova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Tatiana N. Akentyeva
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Maria A. Rezvova
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Alexander N. Stasev
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Alexey V. Evtushenko
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Leonid S. Barbarash
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| | - Anton G. Kutikhin
- Department of Experimental MedicineResearch Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussian Federation
| |
Collapse
|
3
|
Zhuravleva IY, Karpova EV, Oparina LA, Poveschenko OV, Surovtseva MA, Titov AT, Ksenofontov AL, Vasilieva MB, Kuznetsova EV, Bogachev-Prokophiev AV, Trofimov BA. Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: A multiparametric assessment study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111473. [PMID: 33255052 DOI: 10.1016/j.msec.2020.111473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Bioprosthetic heart valves made from bovine pericardium (BP) and porcine pericardium (PP) preserved with glutaraldehyde (GA) are commonly used in valve surgeries but prone to calcification in many patients. In this study, we compared BP and PP preserved with GA, ethylene glycol diglycidyl ether (DE), and 1,2,3,4,6-penta-O-{1-[2-(glycidyloxy)ethoxy]ethyl}-d-glucopyranose (PE). We studied the stabilities of DE and PE in preservation media along with the amino acid (AA) compositions, Fourier-transform infrared spectra, mechanical properties, surface morphologies, thermal stability, calcification, and the cytocompatibility of BP and PP treated with 0.625% GA, 5% DE, 2% PE, and alternating 5% DE and 2% PE for 3 + 11 d and 10 + 10 d, respectively. Both epoxides were stable in the water-buffer solutions (pH 7.4). DE provided high linkage densities in BP and PP owing to reactions with Hyl, Lys, His, Arg, Ser, and Tyr. PE reacted weakly with these AAs but strongly with Met. High cross-linking density obtained using the 10 d + 10 d method provided satisfactory thermal stability of biomaterials. The epoxy preservations improved cytocompatibility and resistance to calcification. PE enhanced the stress/strain properties of the xenogeneic pericardia, perhaps by forming nanostructures that were clearly visualised in BP using scanning electron microscopy. The DE + PE combination, in an alternating cross-linking manner, thus constitutes a promising option for developing bioprosthetic pericardia.
Collapse
Affiliation(s)
- Irina Yu Zhuravleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia.
| | - Elena V Karpova
- N. Vorozhtsov Institute of Organic Chemistry of SB RAS, 9 Lavrentyev Avenue, Novosibirsk 630090, Russia
| | - Ludmila A Oparina
- A. Favorsky Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk 664033, Russia
| | - Olga V Poveschenko
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Maria A Surovtseva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Anatoly T Titov
- V. Sobolev Institute of Geology and Mineralogy SB RAS, 3 Academician Koptyug Avenue, Novosibirsk 630090, Russia
| | - Alexander L Ksenofontov
- A. Belozersky Research Institute of Physico-Chemical Biology MSU, House 1, Building 40 Leninskye gory, Moscow 119992, Russia
| | - Maria B Vasilieva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Elena V Kuznetsova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Alexander V Bogachev-Prokophiev
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Boris A Trofimov
- A. Favorsky Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk 664033, Russia
| |
Collapse
|
4
|
Elastin-Dependent Aortic Heart Valve Leaflet Curvature Changes During Cyclic Flexure. Bioengineering (Basel) 2019; 6:bioengineering6020039. [PMID: 31067726 PMCID: PMC6631801 DOI: 10.3390/bioengineering6020039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The progression of calcific aortic valve disease (CAVD) is characterized by extracellular matrix (ECM) remodeling, leading to structural abnormalities and improper valve function. The focus of the present study was to relate aortic valve leaflet axial curvature changes as a function of elastin degradation, which has been associated with CAVD. Circumferential rectangular strips (L × W = 10 × 2.5 mm) of normal and elastin-degraded (via enzymatic digestion) porcine AV leaflets were subjected to cyclic flexure (1 Hz). A significant increase in mean curvature (p < 0.05) was found in elastin-degraded leaflet specimens in comparison to un-degraded controls at both the semi-constrained (50% of maximum flexed state during specimen bending and straightening events) and fully-constrained (maximally-flexed) states. This significance did not occur in all three flexed configurations when measurements were performed using either minimum or maximum curvature. Moreover, the mean curvature increase in the elastin-degraded leaflets was most pronounced at the instance of maximum flexure, compared to un-degraded controls. We conclude that the mean axial curvature metric can detect distinct spatial changes in aortic valve ECM arising from the loss in bulk content and/or structure of elastin, particularly when there is a high degree of tissue bending. Therefore, the instance of maximum leaflet flexure during the cardiac cycle could be targeted for mean curvature measurements and serve as a potential biomarker for elastin degradation in early CAVD remodeling.
Collapse
|