1
|
Zinzani PL, Minotti G. Anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory B-cell malignancies: a narrative review with focus on diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2021; 148:177-190. [PMID: 34741682 PMCID: PMC8752543 DOI: 10.1007/s00432-021-03833-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE CD19 is a cell surface protein that is found on both healthy and malignant B cells. Accordingly, it has become an important target for novel treatments for non-Hodgkin lymphomas and B-cell leukaemia. Three anti-CD19 monoclonal antibodies with distinct mechanisms of action have been developed for the treatment of B-cell malignancies. METHODS We reviewed the preclinical and clinical data on the development of the newly approved anti-CD19 monoclonal antibodies blinatumomab, tafasitamab and loncastuximab tesirine, and consider their place in the treatment of relapsed or refractory B-cell malignancies. RESULTS Blinatumomab is a bispecific T-cell engager that binds to both CD19 on B cells and CD3 on T cells, facilitating antibody-dependent cytotoxicity. Blinatumomab significantly prolongs overall survival in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia, although cytokine release syndrome and severe neurotoxicity may necessitate discontinuation. Tafasitamab, which has modified anti-CD19 Fab and Fc regions, has significantly enhanced affinity for both CD19 and effector cell receptors compared with unmodified anti-CD19. In L-MIND, tafasitamab plus lenalidomide provided an overall response rate (ORR) of 57.5% in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) in patients non-transplant eligible. Loncastuximab tesirine is an antibody-drug conjugate that has been studied as monotherapy and in combination with ibrutinib in 3L + relapsed or refractory DLBCL. The ORR was 48.3% in a phase II trial of loncastuximab tesirine. The optimal place of anti-CD19 monoclonal antibodies in therapy has yet to be determined, but the prospect of improved outcomes for at least some patients with treatment-resistant B-cell malignancies appears likely, particularly in those with limited therapeutic options and poor prognosis.
Collapse
Affiliation(s)
- Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Via Massarenti 9, 40138, Bologna, Italy. .,Department of Specialist, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy.
| | - Giorgio Minotti
- Department of Medicine, Center for Integrated Research and Unit of Drug Science, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Tilch MK, Robak T, Ghiggi C, Wuff E, Herold S, Theobald M, Hess G. Safety of the Anti-CD19 antibody Tafasitamab in Long Term Responders from A Phase II Trial for Relapsed Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:270-275. [PMID: 34776401 DOI: 10.1016/j.clml.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Information about the long-term tolerability of tafasitamab is still limited. METHODS 5 of 92 patients treated within a phase IIa study of single-agent tafasitamab in relapsed or refractory B NHL were followed for up to five years or longer for long-term tolerability. RESULTS Treatment was very well tolerated in an outpatient setting with no hospitalizations needed and mild and tolerable adverse events that occurred mostly within the first two years of treatment. CONCLUSIONS Given the excellent tolerability and efficacy of tafasitamab this agent can be used to induce remission in relapsed or refractory lymphoma either alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Marie-Kristin Tilch
- Department of Hematology, Oncology and Pneumology & University Cancer Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Chiara Ghiggi
- Division of Hematology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elke Wuff
- Department of Hematology, Oncology and Pneumology & University Cancer Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Stephanie Herold
- Department of Hematology, Oncology and Pneumology & University Cancer Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology and Pneumology & University Cancer Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Georg Hess
- Department of Hematology, Oncology and Pneumology & University Cancer Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany.
| |
Collapse
|
3
|
Abstract
Tafasitamab (tafasitamab-cxix; MONJUVI®) is an Fc-modified (i.e. two amino acid substitutions within the Fc region, resulting in increased Fcγ receptor affinity), humanized, anti-CD19 monoclonal antibody. Developed by MorphoSys AG, under a license from Xencor, it received accelerated approval (in July 2020) for use in combination with lenalidomide as a treatment for adults with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) not otherwise specified, including DLBCL arising from low grade lymphoma, and who are not eligible for autologous stem cell transplantation (ASCT). It is the first therapy to be approved as a second-line treatment for this patient population in the USA. The recommended dose of tafasitamab is 12 mg per kg of bodyweight, administered via an intravenous infusion. A regulatory assessment for tafasitamab plus lenalidomide for the treatment of adults with relapsed or refractory DLBCL is currently underway in the EU. Tafasitamab is also being clinically investigated as a therapeutic option in various other B-cell malignancies, including follicular lymphoma and other indolent non-Hodgkin's lymphoma. This article summarizes the milestones in the development of tafasitamab leading to this first approval for its use in combination with lenalidomide in adults with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
4
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
5
|
Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG, Hadjati J. Predictive and therapeutic biomarkers in chimeric antigen receptor T‐cell therapy: A clinical perspective. J Cell Physiol 2018; 234:5827-5841. [DOI: 10.1002/jcp.27519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology School of Medicine, Mashhad University of Medical Sciences Mashahd Iran
| | - Afshin Namdar
- Department of Dentistry Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | - Majid Rahmati
- Cancer Prevention Research Center Shahroud University of Medical Sciences Shahroud Iran
| | - Brian G. Till
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA United States
| | - Jamshid Hadjati
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Liu Z, Yang Y, Zhang X, Wang H, Xu W, Wang H, Xiao F, Bai Z, Yao H, Ma X, Jin L, Wu C, Seth P, Zhang Z, Wang L. An Oncolytic Adenovirus Encoding Decorin and Granulocyte Macrophage Colony Stimulating Factor Inhibits Tumor Growth in a Colorectal Tumor Model by Targeting Pro-Tumorigenic Signals and via Immune Activation. Hum Gene Ther 2017; 28:667-680. [DOI: 10.1089/hum.2017.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhao Liu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Xiaoyan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhigang Bai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuemei Ma
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chutse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Zhongtao Zhang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|