1
|
Li N, Hu L, Li J, Ye Y, Bao Z, Xu Z, Chen D, Tang J, Gu Y. The Immunomodulatory effect of exosomes in diabetes: a novel and attractive therapeutic tool in diabetes therapy. Front Immunol 2024; 15:1357378. [PMID: 38720885 PMCID: PMC11076721 DOI: 10.3389/fimmu.2024.1357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
Collapse
Affiliation(s)
- Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Lingli Hu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyang Li
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhengyang Bao
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Gu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
- Department of Obstetrics, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Pawluk H, Kołodziejska R, Grześk G, Woźniak A, Kozakiewicz M, Kosinska A, Pawluk M, Grześk-Kaczyńska M, Grzechowiak E, Wojtasik J, Kozera G. The Potential Role of RANTES in Post-Stroke Therapy. Cells 2023; 12:2217. [PMID: 37759440 PMCID: PMC10526279 DOI: 10.3390/cells12182217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
One of the key response mechanisms to brain damage, that results in neurological symptoms, is the inflammatory response. It triggers processes that exacerbate neurological damage and create the right environment for the subsequent repair of damaged tissues. RANTES (Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted) chemokine(C-C motif) ligand 5 (CCL5) is one of the chemokines that may have a dual role in stroke progression involving aggravating neuronal damage and playing an important role in angiogenesis and endothelial repair. This study concerned patients with ischemic stroke (AIS), whose CCL5 concentration was measured at various time intervals and was compared with the control group. In addition, the effect of this biomarker on neurological severity and functional prognosis was investigated. Compared to healthy patients, a higher concentration of this chemokine was demonstrated in less than 4.5 h, 24 h and on the seventh day. Differences in CCL5 levels were found to be dependent on the degree of disability and functional status assessed according to neurological scales (modified Rankin Scale, National Institutes of Health Stroke Scale). In addition, differences between various subtypes of stroke were demonstrated, and an increase in CCL5 concentration was proven to be a negative predictor of mortality in patients with AIS. The deleterious effect of CCL5 in the acute phase of stroke and the positive correlation between the tested biomarkers of inflammation were also confirmed.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland; (G.G.); (M.G.-K.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Mariusz Kozakiewicz
- Division of Biochemistry and Biogerontology, Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626 Bydgoszcz, Poland;
| | - Agnieszka Kosinska
- Centre for Languages & International Education, University College London, 26 Bedford Way, London WC1H 0AP, UK;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Magdalena Grześk-Kaczyńska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland; (G.G.); (M.G.-K.)
| | - Elżbieta Grzechowiak
- Department of Neurology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Marii Skłodowskiej Curie 9, 85-094 Bydgoszcz, Poland;
| | - Jakub Wojtasik
- Statistical Analysis Centre, Nicolaus Copernicus University in Toruń, Chopin 12/18, 87-100 Toruń, Poland;
| | - Grzegorz Kozera
- Centre of Medical Simulations, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland;
| |
Collapse
|
4
|
da Silva LS, Germano DB, Fonseca FAH, Shio MT, da Silva Nali LH, Tuleta ID, Juliano Y, de Oliveira Izar MC, Ribeiro AP, Kato JT, do Amaral JB, França CN. Persistence of a proinflammatory status after treatment of the acute myocardial infarction. Geriatr Gerontol Int 2023; 23:700-707. [PMID: 37522226 DOI: 10.1111/ggi.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIM To evaluate the lipid-lowering and antiplatelet combined strategies on the expression of the receptors CCR2, CCR5, and CX3CR1 and the percentage of CCR2, CCR5, and CX3CR1 cells in monocyte subtypes after acute myocardial infarction. METHODS Prospective, randomized, open-label study, with blinded analyses of endpoints (PROBE, ClinicalTrials.gov Identifier: NCT02428374, registration date: April 28, 2015). Participants were treated with rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg. The chemokine receptors CCR2, CCR5, and CX3CR1 were analyzed by real-time polymerase chain reaction as well as the percentages of CCR2, CCR5, and CX3CR1 cells in the monocyte subtypes (classical, intermediate, and non-classical), which were quantified by flow cytometry, at baseline, and after 1 and 6 months of treatment. RESULTS After comparisons between the three visits, regardless of the treatment arm, there was an increase in CCR2 expression after treatment, as well as an increase in intermediate monocytes CCR2+ and a reduction in non-classical monocytes CCR2+ at the end of treatment. There was also a lower expression of CCR5 after treatment and an increase in classical and non-classical monocytes CCR5+. Concerning CX3CR1, there were no differences in the expression after treatment; however, there were reductions in the percentage of intermediate and non-classical monocytes CX3CR1+ at the end of treatment. CONCLUSIONS The results suggest the persistence of the inflammatory phenotype, known as trained immunity, even with the highly-effective lipid-lowering and antiplatelet therapies. Geriatr Gerontol Int 2023; 23: 700-707.
Collapse
Affiliation(s)
| | | | | | - Marina Tiemi Shio
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Ana Paula Ribeiro
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Juliana Tieko Kato
- Medicine Department, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| |
Collapse
|
5
|
CCL5 Levels Predict Stroke Volume Growth in Acute Ischemic Stroke and Significantly Diminish in Hemorrhagic Stroke Patients. Int J Mol Sci 2022; 23:ijms23179967. [PMID: 36077361 PMCID: PMC9456070 DOI: 10.3390/ijms23179967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke remains an important health challenge. Here, we study whether circulating chemokine (C-C motif) ligand 5 (CCL5) levels may predict clinical outcomes for stroke patients. A total of 100 consecutive stroke patients (36 acute ischemic and 64 hemorrhagic) were admitted to the stroke unit. Clinical history data and monitoring parameters were recorded. Blood serum was collected at days 0, 1, and hospital discharge to measure CCL5 levels by ELISA. Infarct or hemorrhagic volume, neurological severity (NIHSS), and functional prognosis (mRankin scale) were measured as clinical outcomes. CCL5 levels were lower in patients with hemorrhagic stroke than in patients with acute ischemic stroke. No differences were found between females and males in both types of stroke. Ischemic stroke patients whose infarct volume grew had lower CCL5 levels at day 0. Levels of CCL5 in ischemic and hemorrhagic patients were not associated with more severe symptoms/worse prognosis (NIHSS > 3; mRankin > 2) at admission or at 3 months. CCL5 could be used as a diagnostic marker to distinguish between ischemic and hemorrhagic strokes. Furthermore, CCL5 levels could predict the infarct volume outcomes in ischemic patients.
Collapse
|
6
|
VLA4-Enhanced Allogeneic Endothelial Progenitor Cell-Based Therapy Preserves the Aortic Valve Function in a Mouse Model of Dyslipidemia and Diabetes. Pharmaceutics 2022; 14:pharmaceutics14051077. [PMID: 35631662 PMCID: PMC9143616 DOI: 10.3390/pharmaceutics14051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The number and function of endothelial progenitor cells (EPCs) are reduced in diabetes, contributing to deteriorated vascular repair and the occurrence of cardiovascular complications. Here, we present the results of treating early diabetic dyslipidemic mice or dyslipidemic with disease-matched EPCs modified to overexpress VLA4 (VLA4-EPCs) as compared with the treatment of EPCs transfected with GFP (GFP-EPCs) as well as EPCs from healthy animals. Organ imaging of injected PKH26-stained cells showed little pulmonary first-pass effects and distribution in highly vascularized organs, with splenic removal from circulation, mostly in non-diabetic animals. Plasma measurements showed pronounced dyslipidemia in all animals and glycaemia indicative of diabetes in streptozotocin-injected animals. Echocardiographic measurements performed 3 days after the treatment showed significantly improved aortic valve function in animals treated with VLA4-overexpressing EPCs compared with GFP-EPCs, and similar results in the groups treated with healthy EPCs and VLA4-EPCs. Immunohistochemical analyses revealed active inflammation and remodelling in all groups but different profiles, with higher MMP9 and lower P-selectin levels in GFP-EPCs, treated animals. In conclusion, our experiments show that genetically modified allogeneic EPCs might be a safe treatment option, with bioavailability in the desired target compartments and the ability to preserve aortic valve function in dyslipidemia and diabetes.
Collapse
|
7
|
Cialoni D, Brizzolari A, Barassi A, Bosco G, Pieri M, Lancellotti V, Marroni A. White Blood Cells, Platelets, Red Blood Cells and Gas Bubbles in SCUBA Diving: Is There a Relationship? Healthcare (Basel) 2022; 10:healthcare10020182. [PMID: 35206797 PMCID: PMC8872182 DOI: 10.3390/healthcare10020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: SCUBA diving can influence changes of several hematological parameters (HP) but the changes of HP in the decompression phases are still unclear. The aim of this study was to investigate any possible relationship between HP and predisposition to inert gas bubble formation after a single recreational dive. (2) Methods: Blood, obtained from 32 expert SCUBA divers, was tested for differences in white blood cells (WBC), granulocytes (GRAN), lymphocytes (LYM), and monocytes (MONO), red blood cells (RBC), and platelets (PLT) between bubblers (B) and non-bubblers (NB). (3) Results: We found inter-subject differences in bubble formation (considering the same diving profile performed by the divers) and a statistically significant higher number of total WBC, GRAN and LYM in NB as compared to the B divers in the pre and in the post diving sample, while no statistical differences were found for MONO and PLT. In addition, we did not find any statistically significant difference between NB and B in RBC. (4) Conclusions: Our results, even if in absence of investigated anti-inflammatory markers, could indicate a relationship between low WBC numbers and bubble formation. This aspect may explain a possible cause of inter-subject differences in bubble formation in divers performing the same dive profile.
Collapse
Affiliation(s)
- Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy; (A.B.); (G.B.)
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy; (M.P.); (A.M.)
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
- Correspondence:
| | - Andrea Brizzolari
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy; (A.B.); (G.B.)
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy; (M.P.); (A.M.)
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy; (A.B.); (G.B.)
| | - Massimo Pieri
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy; (M.P.); (A.M.)
| | - Valentina Lancellotti
- Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy;
| | - Alessandro Marroni
- DAN Europe Research Division, 64026 Roseto degli Abruzzi, Italy; (M.P.); (A.M.)
| |
Collapse
|
8
|
Heo J, Kang H. Exosome-Based Treatment for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23021002. [PMID: 35055187 PMCID: PMC8778342 DOI: 10.3390/ijms23021002] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
9
|
Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 2022; 9:12-27. [PMID: 34514075 PMCID: PMC8423937 DOI: 10.1016/j.gendis.2021.08.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
To defense harmful stimuli or maintain the immune homeostasis, the body produces and recruits a superfamily of cytokines such as interleukins, interferons, chemokines etc. Among them, chemokines act as crucial regulators in defense systems. CCL5/CCR5 combination is known for facilitating inflammatory responses, as well as inducing the adhesion and migration of different T cell subsets in immune responses. In addition, recent studies have shown that the interaction between CCL5 and CCR5 is involved in various pathological processes including inflammation, chronic diseases, cancers as well as the infection of COVID-19. This review focuses on how CCL5/CCR5 axis participates in the pathological processes of different diseases and their relevant signaling pathways for the regulation of the axis. Moreover, we highlighted the gene therapy and chemotherapy studies for treating CCR5-related diseases, including the ongoing clinical trials. The barriers and perspectives for future application and translational research were also summarized.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
10
|
Borowska M, Winiarska H, Dworacka M, Wesołowska A, Dworacki G, Mikołajczak PŁ. The Effect of Homocysteine on the Secretion of Il-1β, Il-6, Il-10, Il-12 and RANTES by Peripheral Blood Mononuclear Cells-An In Vitro Study. Molecules 2021; 26:molecules26216671. [PMID: 34771080 PMCID: PMC8588228 DOI: 10.3390/molecules26216671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
The contemporary theory of the inflammatory-immunological pathomechanism of atherosclerosis includes the participation of interleukin-1β (Il), Il-6, Il-10, Il-12, RANTES, and homocysteine in this process. The knowledge on the direct effect of hyperhomocysteinemia on inflammatory-state-related atherosclerosis is rather scarce. Our study is the first to account for the effects of homocysteine on the secretion of Il-10 and RANTES in vitro conditions. For this purpose, human mitogen-stimulated peripheral blood mononuclear cells (PBMNCs) were cultured in vitro and exposed to homocysteine at high concentrations. Subsequently, the concentrations of cytokines were assayed in the cell culture supernatant using flow cytofluorimetry. It has been shown that, in the presence of homocysteine, the secretion of IL-1, IL-6 and RANTES by PBMNCs was increased, whereas IL-10 concentration was significantly lower than that of the supernatant derived from a mitogen-stimulated cell culture without homocysteine. The secretion of Il-12 by PBMNCs exposed exclusively to mitogen, did not differ from homologous cells also treated with homocysteine. Therefore, in our opinion, high-concentration homocysteine affects the progression of atherosclerosis by increasing the secretion of proinflammatory cytokines secreted by PBMNCs, such as Il-1β, Il-6, RANTES, and by attenuating the secretion of Il-10.
Collapse
Affiliation(s)
- Magdalena Borowska
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.W.); (M.D.); (A.W.); (P.Ł.M.)
- Correspondence:
| | - Hanna Winiarska
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.W.); (M.D.); (A.W.); (P.Ł.M.)
| | - Marzena Dworacka
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.W.); (M.D.); (A.W.); (P.Ł.M.)
| | - Anna Wesołowska
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.W.); (M.D.); (A.W.); (P.Ł.M.)
| | - Grzegorz Dworacki
- Department of Clinical Pathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Przemysław Łukasz Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.W.); (M.D.); (A.W.); (P.Ł.M.)
| |
Collapse
|
11
|
Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov 2021; 7:235. [PMID: 34493702 PMCID: PMC8423825 DOI: 10.1038/s41420-021-00610-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disorder characterized by endothelial dysfunction. Endothelial progenitor cells (EPCs) can overcome endothelial dysfunction and reduce AS risk. This study focused on the role of EPC-secreted extracellular vesicles (EPC-EVs) in AS. First, mouse EPCs and mouse aortic endothelial cells (MAECs) were isolated and identified. EVs were isolated from EPCs and identified. EPC-EVs were co-cultured with MAECs and the internalization of EVs was observed. Glutathione (GSH) consumption, reactive oxygen species (ROS) production, lipid peroxidation, and iron accumulation and cell death in endothelial cells were detected. The binding relationship between miR-199a-3p and specificity protein 1 (SP1) was confirmed using dual-luciferase and RIP assays. The mouse model of AS was established. The relationships between miR-199a-3p expression and aortic area plaque and serum pro-inflammatory factor were analyzed. The degree of atherosclerotic lesion was detected using oil red O staining and the serum inflammatory factors were detected using ELISA. Our results elicited that EPC-EVs inhibited cell death, GSH consumption, ROS production, lipid peroxidation, and iron accumulation in endothelial cells, thereby suppressing ferroptosis of endothelial cells. EPC-EVs transferred miR-199a-3p into endothelial cells. miR-199a-3p targeted SP1. Silencing miR-199a-3p or overexpression of SP1 in endothelial cells reversed the effect of EPC-EVs on ferroptosis of endothelial cells. In vivo experiments confirmed that EPC-EVs inhibited ferroptosis of endothelial cells and then alleviated the occurrence of AS via the miR-199a-3p/SP1 axis. To conclude, EPC-EVs transferred miR-199a-3p to inhibit SP1, thus repressing ferroptosis of endothelial cells and retarding the occurrence of AS.
Collapse
|
12
|
The Entry and Egress of Monocytes in Atherosclerosis: A Biochemical and Biomechanical Driven Process. Cardiovasc Ther 2021; 2021:6642927. [PMID: 34345249 PMCID: PMC8282391 DOI: 10.1155/2021/6642927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
In accordance with “the response to injury” theory, the entry of monocytes into the intima guided by inflammation signals, taking up cholesterol and transforming into foam cells, and egress from plaques determines the progression of atherosclerosis. Multiple cytokines and receptors have been reported to be involved in monocyte recruitment such as CCL2/CCR2, CCL5/CCR5, and CX3CL1/CX3CR1, and the egress of macrophages from the plaque like CCR7/CCL19/CCL21. Interestingly, some neural guidance molecules such as Netrin-1 and Semaphorin 3E have been demonstrated to show an inhibitory effect on monocyte migration. During the processes of monocytes recruitment and migration, factors affecting the biomechanical properties (e.g., the membrane fluidity, the deformability, and stiffness) of the monocytes, like cholesterol, amyloid-β peptide (Aβ), and lipopolysaccharides (LPS), as well as the biomechanical environment that the monocytes are exposed, like the extracellular matrix stiffness, mechanical stretch, blood flow, and hypertension, were discussed in the latter section. Till now, several small interfering RNAs (siRNAs), monoclonal antibodies, and antagonists for CCR2 have been designed and shown promising efficiency on atherosclerosis therapy. Seeking more possible biochemical factors that are chemotactic or can affect the biomechanical properties of monocytes, and uncovering the underlying mechanism, will be helpful in future studies.
Collapse
|
13
|
Ping S, Qiu X, Kyle M, Zhao LR. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 2021; 12:72-92. [PMID: 33532129 PMCID: PMC7801286 DOI: 10.14336/ad.2020.0406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is expressed not only in the immune cells but also in cerebral cells such as neurons, glia, and vascular cells. Stroke triggers high expression of CCR5 in the brain. However, the role of CCR5 in stroke remains unclear. In this study, using bone marrow chimeras we have determined the involvement of brain-derived or bone marrow-derived CCR5 in neuroprotection and brain repair after experimental stroke. CCR5-/- mice that received either wild-type (WT) or CCR5-/- bone marrow transplantation showed larger infarction sizes than the WT mice that received either WT or CCR5-/- bone marrow transplantation in both the acute (48h) and subacute (2 months) phases after cerebral cortical ischemia, suggesting that the lack of CCR5 in the brain leads to severe brain damage after stroke. However, the lack of CCR5 in the bone marrow-derived cells did not affect infarction size. The impairments of somatosensory-motor function and motor coordination were exacerbated in the mice lacking CCR5 in the brain. At 2 months post-stroke, increased degenerative neurons, decreased dendrites and synapses, decreased Iba1+ microglia/ macrophages, reduced myelination and CNPase+ oligodendrocytes in the peri-infarct cortex were observed in the mice lacking CCR5 in the brain. These pathological changes are significantly correlated with the increased infarction size and exacerbated neurological deficits. These data suggest that brain-derived CCR5 plays a key role in neuroprotection and brain repair in the subacute phase of stroke. This study reveals a novel role of CCR5 in stroke, which sheds new light on post-stroke pathomechanism.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| |
Collapse
|
14
|
Shoeibi S, Mahdipour E, Mohammadi S, Moohebati M, Ghayour-Mobarhan M. Treatment of atherosclerosis through transplantation of endothelial progenitor cells overexpressing dimethylarginine dimethylaminohydrolase (DDAH) in rabbits. Int J Cardiol 2021; 331:189-198. [PMID: 33535073 DOI: 10.1016/j.ijcard.2021.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is a key event in the development of vascular diseases, including atherosclerosis. Endothelial progenitor cells (EPCs) play an important role in vascular repair. Decreased dimethylarginine dimethylaminohydrolase (DDAH) activity is observed in several pathological conditions, and it is associated with an increased risk of vascular disease. We hypothesized that bone marrow-derived EPCs and combination therapy with DDAH2-EPCs could reduce plaque size and ameliorate endothelial dysfunction in an atherosclerosis rabbit model. METHOD Four groups of rabbits (n = 8 per group) were subjected to a hyperlipidemic diet for a month. After establishing the atherosclerosis model, rabbits received 4 × 106 EPC, EPCs expressing DDAH2, through femoral vein injection, or saline (the control group with basic food and the untreated group). One month after transplantation, plaque thickness, endothelial function, oxidative stress, and inflammatory mRNAs, DDAH, and eNOS function were assessed. RESULTS DDAH2-EPCs transplantation (p < 0.05) and EPCs transplantation (p < 0.05) were both associated with a reduction in plaque size compared to the control saline injection. The antiproliferative and antiatherogenic effects of EPCs were further enhanced by the overexpression of DDAH2 (p < 0.05, DDAH2-EPCs vs. EPCs). Furthermore, DDAH2-EPCs transplantation significantly increased endothelium integrity compared to the EPCs transplantation. CONCLUSION Transplantation of EPCs overexpressing DDAH2 may enhance the repair of injured endothelium by reducing inflammation and restoring endothelial function. Therefore, pCMV6-mediated DDAH2 gene-transfected EPCs are a potentially valuable tool for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Mohammadi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Rasheed A, Shawky SA, Tsai R, Jung RG, Simard T, Saikali MF, Hibbert B, Rayner KJ, Cummins CL. The secretome of liver X receptor agonist-treated early outgrowth cells decreases atherosclerosis in Ldlr-/- mice. Stem Cells Transl Med 2020; 10:479-491. [PMID: 33231376 PMCID: PMC7900590 DOI: 10.1002/sctm.19-0390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) promote the maintenance of the endothelium by secreting vasoreparative factors. A population of EPCs known as early outgrowth cells (EOCs) is being investigated as novel cell‐based therapies for the treatment of cardiovascular disease. We previously demonstrated that the absence of liver X receptors (LXRs) is detrimental to the formation and function of EOCs under hypercholesterolemic conditions. Here, we investigate whether LXR activation in EOCs is beneficial for the treatment of atherosclerosis. EOCs were differentiated from the bone marrow of wild‐type (WT) and LXR‐knockout (Lxrαβ−/−) mice in the presence of vehicle or LXR agonist (GW3965). WT EOCs treated with GW3965 throughout differentiation showed reduced mRNA expression of endothelial lineage markers (Cd144, Vegfr2) compared with WT vehicle and Lxrαβ−/− EOCs. GW3965‐treated EOCs produced secreted factors that reduced monocyte adhesion to activated endothelial cells in culture. When injected into atherosclerosis‐prone Ldlr−/− mice, GW3965‐treated EOCs, or their corresponding conditioned media (CM) were both able to reduce aortic sinus plaque burden compared with controls. Furthermore, when human EOCs (obtained from patients with established CAD) were treated with GW3965 and the CM applied to endothelial cells, monocyte adhesion was decreased, indicating that our results in mice could be translated to patients. Ex vivo LXR agonist treatment of EOCs therefore produces a secretome that decreases early atherosclerosis in Ldlr−/− mice, and additionally, CM from human EOCs significantly inhibits monocyte to endothelial adhesion. Thus, active factor(s) within the GW3965‐treated EOC secretome may have the potential to be useful for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Adil Rasheed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sarah A Shawky
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Richard G Jung
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Trevor Simard
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Hibbert
- Capital Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Banting and Best Diabetes Centre, Toronto, Ontario, Canada.,The Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Bai S, Yin Q, Dong T, Dai F, Qin Y, Ye L, Du J, Zhang Q, Chen H, Shen B. Endothelial progenitor cell-derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes. Biomed Pharmacother 2020; 131:110756. [PMID: 33152921 DOI: 10.1016/j.biopha.2020.110756] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a serious cardiovascular complication of diabetes characterized by inflammation and endothelial damage. Indeed, dysfunction of the endothelium is considered an early marker of atherosclerosis. Endothelial progenitor cells (EPCs) are prerequisites for blood vessels lined with endothelial cells (ECs), which produce many factors to regulate blood vessel function. Importantly, EPCs also repair some dysfunctions in ECs. Exosomes have been associated with the occurrence and development of disease. Here, we analyzed the microRNAs (miRNAs) contained in exosomes derived from EPCs by using next-generation sequencing. We found that most of the top 10 highest expressed miRNAs in these exosomes were related to atherosclerosis. In a mouse model of atherosclerotic diabetes, treatment with EPC-derived exosomes significantly reduced the production of diabetic atherosclerotic plaques and inflammatory factors. In an in vitro assay examining the contractility of the thoracic aorta from these mice, the addition of EPC-derived exosomes significantly ameliorated the observed endothelium-dependent contractile dysfunction. Taken together, these results indicated that EPC-derived exosomes ameliorated atherosclerotic endothelial dysfunction in a mouse model of atherosclerotic diabetes. Thus, the present study provides a potential therapeutic application of EPC-derived exosomes in cardiovascular disease.
Collapse
Affiliation(s)
- Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qianqian Yin
- Department of Endocrinology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fang Dai
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ying Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li Ye
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qiu Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230000, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
17
|
Gong P, Zhang Z, Zhang D, Zou Z, Zhang Q, Ma H, Li J, Liao L, Dong J. Effects of endothelial progenitor cells transplantation on hyperlipidemia associated kidney damage in ApoE knockout mouse model. Lipids Health Dis 2020; 19:53. [PMID: 32209093 PMCID: PMC7093994 DOI: 10.1186/s12944-020-01239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/13/2020] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidaemia causes kidney damage over the long term. We investigated the effect of the administration of endothelial progenitor cells (EPCs) on the progression of kidney damage in a mouse model of hyperlipidaemia. Methods Apolipoprotein E-knockout (ApoE−/−) mice were treated with a high-cholesterol diet after spleen resection. Twenty-four weeks later, the mice were divided into two groups and intravenously injected with PBS or EPCs. Six weeks later, the recruitment of EPCs to the kidney was monitored by immunofluorescence. The lipid, endothelial cell, and collagen contents in the kidney were evaluated by specific immunostaining. The protein expression levels of transforming growth factor-β (TGF-β), Smad2/3, and phospho-Smad3 (p-smad3) were detected by western blot analysis. Results ApoE−/− mice treated with a high-fat diet demonstrated glomerular lipid deposition, enlargement of the glomerular mesangial matrix, endothelial cell enlargement accompanied by vacuolar degeneration and an area of interstitial collagen in the kidney. Six weeks after EPC treatment, only a few EPCs were detected in the kidney tissues of ApoE−/− mice, mainly in the kidney interstitial area. No significant differences in TGF-β, p-smad3 or smad2/3 expression were found between the PBS group and the EPC treatment group (TGF-β expression, PBS group: 1.06 ± 0.09, EPC treatment group: 1.09 ± 0.17, P = 0.787; p-smad3/smad2/3 expression: PBS group: 1.11 ± 0.41, EPC treatment group: 1.05 ± 0.33, P = 0.861). Conclusions Our findings demonstrate that hyperlipidaemia causes basement membrane thickening, glomerulosclerosis and the vascular degeneration of endothelial cells. The long-term administration of EPCs substantially has limited effect in the progression of kidney damage in a mouse model of hyperlipidaemia.
Collapse
Affiliation(s)
- Piyun Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.,Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dongmei Zhang
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Xi'an, 710054, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Huimei Ma
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Jingxiu Li
- Quality control office, People's Hospital of Gaoqing, Zibo, 256300, China
| | - Lin Liao
- Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China. .,Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Zhang Z, Wang Q, Yao J, Zhou X, Zhao J, Zhang X, Dong J, Liao L. Chemokine Receptor 5, a Double-Edged Sword in Metabolic Syndrome and Cardiovascular Disease. Front Pharmacol 2020; 11:146. [PMID: 32194402 PMCID: PMC7063056 DOI: 10.3389/fphar.2020.00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key characteristic of cardiovascular disease (CVD) is endothelial dysfunction, which is likely the consequence of inflammation. It is well demonstrated that chemokines and their receptors play a crucial role in regulating inflammatory responses, and recently, much attention has been paid to chemokine receptor 5 (CCR5) and its ligands. For example, CCR5 aggravates the inflammatory response in adipose tissue by regulating macrophage recruitment and M1/M2 phenotype switch, thus causing insulin resistance and obesity. Inhibition of CCR5 expression reduces the aggregation of pro-atherogenic cytokines to the site of arterial injury. However, targeting CCR5 is not always effective, and emerging evidence has shown that CCR5 facilitates progenitor cell recruitment and promotes vascular endothelial cell repair. In this paper, we provide recent insights into the role of CCR5 and its ligands in metabolic syndrome as related to cardiovascular disease and the opportunities and roadblocks in targeting CCR5 and its ligands.
Collapse
Affiliation(s)
- Zhongwen Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Qiannan Wang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Jinming Yao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Xiaoqian Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Francisci D, Pirro M, Schiaroli E, Mannarino MR, Cipriani S, Bianconi V, Alunno A, Bagaglia F, Bistoni O, Falcinelli E, Bury L, Gerli R, Mannarino E, De Caterina R, Baldelli F. Maraviroc Intensification Modulates Atherosclerotic Progression in HIV-Suppressed Patients at High Cardiovascular Risk. A Randomized, Crossover Pilot Study. Open Forum Infect Dis 2019; 6:ofz112. [PMID: 30968058 PMCID: PMC6446135 DOI: 10.1093/ofid/ofz112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Experimental CCR5 antagonism with maraviroc in atherosclerosis-prone mice and preliminary data in humans suggest an anti-atherosclerotic effect of the drug. We assessed the impact of maraviroc treatment in persons living with HIV on subclinical indicators of atherosclerosis. Methods Persons living with HIV on effective antiretroviral therapy (ART) including only protease inhibitors were recruited if they had a Framingham risk score >20% and brachial flow-mediated dilation (bFMD) <4%, as indices of high cardiovascular risk. Maraviroc (300 mg per os for 24 weeks) was administered, in addition to ongoing ART, to all patients using a crossover design. Brachial FMD, carotid-femoral pulse wave velocity (cfPWV), and carotid intima-media thickness (cIMT) were measured as markers of atherosclerosis. Vascular competence—as expressed by the ratio of circulating endothelial microparticles (EMPs) to endothelial progenitor cells (EPCs)—and markers of systemic inflammation and monocyte and platelet activation were assessed. Results Maraviroc treatment significantly improved bFMD, cfPWV, and cIMT by 66%, 11%, and 13%, respectively (P = .002, P = .022, P = .038, respectively). We also found a beneficial effect of maraviroc on the EMP/EPC ratio (P < .001) and platelet/leucocyte aggregates (P = .013). No significant changes in markers of systemic inflammation, monocyte activation, and microbial translocation were observed. Conclusions Maraviroc led to significant improvements in several markers for cardiovascular risk, endothelial dysfunction, arterial stiffness, and early carotid atherosclerosis, which was accompanied by an increase of vascular competence, without seeming to affect systemic inflammation. Our data support the need for larger studies to test for any effects of maraviroc on preventing atherosclerosis-driven pathologies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis, University of Perugia, Perugia, Italy
| | | | - Massimo R Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Unit of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis, University of Perugia, Perugia, Italy
| | - Alessia Alunno
- Unit of Rheumatology, University of Perugia, Perugia, Italy
| | - Francesco Bagaglia
- Unit of Internal Medicine, Angiology and Arteriosclerosis, University of Perugia, Perugia, Italy
| | - Onelia Bistoni
- Unit of Rheumatology, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Unit of Rheumatology, University of Perugia, Perugia, Italy
| | - Elmo Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis, University of Perugia, Perugia, Italy
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging and Translational Medicine-CeSi-MeT, G.d'Annunzio University- Chieti-Pescara, Chieti, Italy
| | - Franco Baldelli
- Unit of Infectious Diseases, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
New mechanisms of CCR5-Δ32 carriers' advantage - Impact on progenitor cells and renal function. Int J Biochem Cell Biol 2019; 108:92-97. [PMID: 30648621 DOI: 10.1016/j.biocel.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND CCR5 is a chemokine receptor expressed by various populations including leukocytes, smooth muscle cells and endothelium. Δ32 polymorphism of CCR5 gene has been connected with, inter alia, cardiovascular disease development. The aim of our study was to evaluate impact of CCR5 variant on CD34+ and CD34+VEGFR2+ cells - populations involved in cardiovascular system homeostasis and regeneration. METHODS AND RESULTS We have examined 170 Polish subjects from Pomeranian region. The analysis concerned CCR5 polymorphism and flow cytometry evaluation of whole blood cells. Our results indicate that individuals with at least one CCR5-Δ32 allele are characterized by greater number of CD34+CXCR4+, CD34+VEGFR2+ and CD34+VEGFR2+c-Kit + cells than their wild type counterparts. This group also exhibits more beneficial values of renal function parameters. CONCLUSION Maintaining greater size of CD34+ and CD34+VEGFR2+ populations as well as proper kidney function may constitute mechanisms that connect chemokine receptor polymorphism with cardiovascular system health.
Collapse
|
21
|
Haybar H, Rezaeeyan H, Shahjahani M, Shirzad R, Saki N. T‐bet transcription factor in cardiovascular disease: Attenuation or inflammation factor? J Cell Physiol 2018; 234:7915-7922. [DOI: 10.1002/jcp.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
22
|
Hou Y, Li C. Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Front Cell Dev Biol 2018; 6:139. [PMID: 30406100 PMCID: PMC6200850 DOI: 10.3389/fcell.2018.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the world. The stem/progenitor cell-based therapy has emerged as a promising approach for the treatment of a variety of cardiovascular diseases including myocardial infarction, stroke, peripheral arterial disease, and diabetes. An increasing number of evidence has shown that stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and vascular functions, and repair injured tissues in many pre-clinical studies and clinical trials. In this review, we have outlined the major types of stem/progenitor cells, and summarized the studies in applying these cells, especially endothelial stem/progenitor cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies used to improve the stem/progenitor cell-based therapies in cardiovascular disease and the challenges with these therapies in clinical applications are also reviewed.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
23
|
Suffee N, Le Visage C, Hlawaty H, Aid-Launais R, Vanneaux V, Larghero J, Haddad O, Oudar O, Charnaux N, Sutton A. Pro-angiogenic effect of RANTES-loaded polysaccharide-based microparticles for a mouse ischemia therapy. Sci Rep 2017; 7:13294. [PMID: 29038476 PMCID: PMC5643514 DOI: 10.1038/s41598-017-13444-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Peripheral arterial disease results from the chronic obstruction of arteries leading to critical hindlimb ischemia. The aim was to develop a new therapeutic strategy of revascularization by using biodegradable and biocompatible polysaccharides-based microparticles (MP) to treat the mouse hindlimb ischemia. For this purpose, we deliver the pro-angiogenic chemokine Regulated upon Activation, Normal T-cell Expressed and Secreted (RANTES)/CCL5 in the mouse ischemic hindlimb, in solution or incorporated into polysaccharide-based microparticles. We demonstrate that RANTES-loaded microparticles improve the clinical score, induce the revascularization and the muscle regeneration in injured mice limb. To decipher the mechanisms underlying RANTES effects in vivo, we demonstrate that RANTES increases the spreading, the migration of human endothelial progenitor cells (EPC) and the formation of vascular network. The main receptors of RANTES i.e. CCR5, syndecan-4 and CD44 expressed at endothelial progenitor cell surface are involved in RANTES-induced in vitro biological effects on EPC. By using two RANTES mutants, [E66A]-RANTES with impaired ability to oligomerize, and [44AANA47]-RANTES mutated in the main RANTES-glycosaminoglycan binding site, we demonstrate that both chemokine oligomerization and binding site to glycosaminoglycans are essential for RANTES-induced angiogenesis in vitro. Herein we improved the muscle regeneration and revascularization after RANTES-loaded MP local injection in mice hindlimb ischemia.
Collapse
Affiliation(s)
- N Suffee
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - C Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - H Hlawaty
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - R Aid-Launais
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - V Vanneaux
- APHP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France.,Inserm UMR1160 et CIC de Biothérapies, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - J Larghero
- APHP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France.,Inserm UMR1160 et CIC de Biothérapies, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - O Haddad
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - O Oudar
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - N Charnaux
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France.,Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - A Sutton
- INSERM, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Bobigny, France. .,Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France.
| |
Collapse
|
24
|
Ding Q, Shen Y, Li D, Yang J, Yu J, Yin Z, Zhang XL. Ficolin-2 triggers antitumor effect by activating macrophages and CD8 + T cells. Clin Immunol 2017; 183:145-157. [PMID: 28844702 DOI: 10.1016/j.clim.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Ficolin-2 is an important serum complement lectin. Here, we describe novel findings indicating that serum ficolin-2 concentrations in multiple tumor patients are significantly lower than those in healthy donors. Administration of exogenous ficolin-2 or ficolin-A (a ficolin-2-like molecule in mouse), with only once, could remarkably inhibit the tumor cells growth in murine tumor models via early macrophages, dendritic cells (DCs) and CD8+ T cells, but not CD4+ T cells. Ficolin-A (FCN-A) knockout (KO) mice exhibits significantly increased tumor cell growth. Ficolin-2 induces macrophage activation, promotes M1 polarization and facilitates proliferation and antigen-specific cytotoxicity of CD8+ T cells. Ficolin-2 binds to Toll-like receptor 4 (TLR4) on macrophages and DCs and promotes their antigen-presenting abilities to CD8+ T cells. Our findings provide a new therapeutic strategy for tumors based on the triggering of immune-mediated antitumor effect by ficolin-2.
Collapse
Affiliation(s)
- Quanquan Ding
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yanying Shen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Dongqing Li
- Department of Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Juan Yang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Jing Yu
- Hubei Province Cancer Hospital, Wuhan 430079, PR China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
25
|
Spisni E, Marabotti C, De Fazio L, Valerii MC, Cavazza E, Brambilla S, Hoxha K, L'Abbate A, Longobardi P. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco. Diving Hyperb Med 2017; 47:9-16. [PMID: 28357819 DOI: 10.28920/dhm47.1.9-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. METHODS Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. RESULTS Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. CONCLUSION The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Translational Physiology and Nutrition Unit, University of Bologna, Via Selmi 3, 40126 Bologna, Italy,
| | - Claudio Marabotti
- Department of Biological, Geological and Environmental, Sciences, University of Bologna, Italy.,Department of Cardiology, Civic Hospital Cecina, Italy
| | - Luigia De Fazio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Elena Cavazza
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Stefano Brambilla
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Klarida Hoxha
- Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| | - Antonio L'Abbate
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Pasquale Longobardi
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| |
Collapse
|
26
|
Otto S, Nitsche K, Jung C, Kryvanos A, Zhylka A, Heitkamp K, Gutiérrez-Chico JL, Goebel B, Schulze PC, Figulla HR, Poerner TC. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI. BMC Cardiovasc Disord 2017; 17:103. [PMID: 28441929 PMCID: PMC5405468 DOI: 10.1186/s12872-017-0534-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/08/2017] [Indexed: 02/03/2023] Open
Abstract
Background Endothelial progenitor cells (EPC) are involved in neovascularization and endothelial integrity. They might be protective in atherosclerosis. Optical coherence tomography (OCT) is a precise intracoronary imaging modality that allows assessment of subintimal plaque development. We evaluated the influence of EPC on coronary plaque burden in stable disease and implemented a novel computational plaque analysis algorithm using OCT. Methods Forty-three patients (69.8% males, 69.6 ± 7.7 years) were investigated by OCT during re-angiography 6 months after elective stent implantation. Different subpopulations of EPCs were identified by flow cytometry according to their co-expression of antigens (CD34+, CD133+, kinase domain receptor, KDR+). An algorithm was applied to calculate the underlying total plaque burden of the stented segments from OCT images. Plaque morphology was assessed according to international consensus in OCT imaging. Results A cumulative sub-strut plaque volume of 10.87 ± 12.7 mm3 and a sub-stent plaque area of 16.23 ± 17.0 mm2 were found within the stented vessel segments with no significant differences between different stent types. All EPC subpopulations (mean of EPC levels: CD34+/CD133+: 2.66 ± 2.0%; CD34+/KDR+: 7.50 ± 5.0%; CD34+/CD133+/KDR+: 1.12 ± 1.0%) inversely correlated with the identified underlying total plaque volume and plaque area (p ≤ 0.012). Conclusions This novel analysis algorithm allows for the first time comprehensive quantification of coronary plaque burden by OCT and illustration as spread out vessel charts. Increased EPC levels are associated with less sub-stent coronary plaque burden which adds to previous findings of their protective role in atherosclerosis.
Collapse
Affiliation(s)
- Sylvia Otto
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Kristina Nitsche
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology, University, Duesseldorf, Medical Faculty and Vascular Diseases, Düsseldorf, Germany
| | | | - Andrey Zhylka
- Belarusian State University, Faculty of Applied Mathematics and Computer Science, Minsk, Belarus
| | - Kerstin Heitkamp
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | | | - Björn Goebel
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Hans R Figulla
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Tudor C Poerner
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
27
|
Zhang Z, Zhang X, Dong J, Gao W, Liu F, Zhao J, Wu X, Guan X, Liu J, Liao L. Association of chemokine ligand 5/chemokine receptor 5 gene promoter polymorphisms with diabetic microvascular complications: A meta-analysis. J Diabetes Investig 2015; 7:212-8. [PMID: 27042273 PMCID: PMC4773673 DOI: 10.1111/jdi.12397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Abstract
Aims/Introduction Chemokine ligand 5 (CCL5) is a member of the CC‐chemokine family expressed in various organs. It contributes to the migration of monocytes/macrophages into injured vascular walls by binding with its receptor chemokine receptor 5 (CCR5). Many studies have accessed the association between CCL5/CCR5 gene promoter polymorphisms and diabetic microvascular complications (DMI). However, the results are conflicting and inconclusive. The aim of the present study was to evaluate the association more precisely. Materials and Methods Trials were retrieved through PubMed, Embase, Medline, China National Knowledge Infrastructure, Web of Science and Cochrane database without restrictions on language. The pooled odds ratio (OR) and 95% confidence interval (CI) were used to describe the strength of association with DMI. Results Data were obtained from 11 case–control studies that included 2,737 DMI patients and 2,435 diabetic control subjects. In the overall analysis, the CCL5‐403 G/A and CCL5‐28 C/G gene polymorphisms were not significantly associated with the risk of DMI. However, CCR5‐59029 G/A was an independent risk factor of DMI in a dominant model (OR 1.77, 95% CI 1.06–2.97). Subgroup analysis showed that the risk of the CCR5 59029A‐positive genotype was significant in Asians (OR 2.08, 95% CI 1.68–2.57). In addition, the CCR5 59029A‐positive genotype was associated with increased risk of albuminuria. Conclusions There were no associations of CCL5 gene promoter polymorphism with the risk of DMI. However, the 59029A polymorphism in CCR5 might affect individual susceptibility for DMI.
Collapse
Affiliation(s)
- Zhongwen Zhang
- Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China; Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Xiaoqian Zhang
- Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Jianjun Dong
- Division of Endocrinology Department of Medicine Qilu Hospital of Shandong University Jinan China
| | - Weiyi Gao
- Department of Cadres Health care Qilu Hospital of Shandong University Qingdao China
| | - Fupeng Liu
- Department of Endocrinology Tengzhou Central People's Hospital Tengzhou China
| | - Junyu Zhao
- Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Xiaoyun Wu
- Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Xiaoling Guan
- Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Ju Liu
- Laboratory of Microvascular Medicine and Medical Research Center Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| | - Lin Liao
- Division of Endocrinology Department of Medicine Shandong Provincial Qianfoshan Hospital Shandong University Jinan China
| |
Collapse
|
28
|
Zhang Z, Wu X, Cai T, Gao W, Zhou X, Zhao J, Yao J, Shang H, Dong J, Liao L. Matrix Metalloproteinase 9 Gene Promoter (rs 3918242) Mutation Reduces the Risk of Diabetic Microvascular Complications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8023-33. [PMID: 26184271 PMCID: PMC4515707 DOI: 10.3390/ijerph120708023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many studies have evaluated the association between matrix metalloproteinase 9 (MMP9) gene promoter polymorphism and diabetic microvascular complications. However, the results are conflicting and inconclusive. The aim of this meta-analysis was to evaluate the association more precisely. MATERIALS AND METHODS Studies were retrieved from the PubMed, Embase, Medline, China National Knowledge Infrastructure, Web of Science, and Cochrane databases. All statistical analyses were performed using Review Manager 5.2. RESULTS Data were abstracted from four case-control studies that included 446 patients with diabetic microvascular complications and 496 diabetic control subjects. The MMP9-1562 C/T genotype was significantly associated with the risk of diabetic nephropathy after stratification by specific type of microvascular complication (CT + TT vs. CC: OR = 0.42, 95% CI = 0.26-0.69, p = 0.0006; TT vs. CC + CT: OR = 0.37, 95% CI = 0.19-0.76, p = 0.006). CONCLUSIONS This study adds to the evidence that MMP9-1562 T gene mutation might reduce the risk of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongwen Zhang
- Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China.
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Xiaoyun Wu
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Tian Cai
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Weiyi Gao
- Department of Cadres Healthcare, Qilu Hospital of Shandong University, Qingdao 266035, China.
| | - Xiaojun Zhou
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Junyu Zhao
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Jinming Yao
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Hongxia Shang
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| | - Jianjun Dong
- Division of Endocrinology, Department of Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Lin Liao
- Division of Endocrinology, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| |
Collapse
|
29
|
Yu AP, Tam BT, Yau WY, Chan KS, Yu SS, Chung TL, Siu PM. Association of endothelin-1 and matrix metallopeptidase-9 with metabolic syndrome in middle-aged and older adults. Diabetol Metab Syndr 2015; 7:111. [PMID: 26692905 PMCID: PMC4676096 DOI: 10.1186/s13098-015-0108-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) contains a cluster of cardiovascular risk factors. People with MetS are more susceptible to cardiovascular disease, diabetes mellitus, and cancer. Endothelin-1 (ET-1) and matrix metallopeptidase-9 (MMP-9) have been implicated in the development of cardiovascular diseases, diabetes mellitus and cancers. This cross-sectional study aimed to examine the association of ET-1 and MMP-9 with MetS in middle-aged and older Hong Kong Chinese adults. METHODS 149 adults aged 50 to 92 (n = 75 for non-MetS group and n = 74 for MetS group) were examined. All subjects were screened for MetS according to the diagnostic guideline of the United States National Cholesterol Education Program (NCEP) Expert Panel Adult Treatment Panel (ATP) III criteria. Serum levels of ET-1 and MMP-9 were measured. Independent t test was used to detect differences between non-MetS and MetS groups and between subjects with or without certain metabolic abnormality. The association of the serum concentration of MMP-9 and ET-1 with MetS parameters were examined by Pearson's correlation analysis. RESULTS Serum level of ET-1 is higher in MetS-positive subjects and in subjects with high blood pressure, elevated fasting blood glucose, and central obesity. The serum concentration of MMP-9 is higher in subjects positively diagnosed with MetS and subjects with high blood pressure, elevated fasting blood glucose, low blood high-density lipoprotein-cholesterol (HDL-C), high blood triglycerides, and central obesity. Correlation analyses revealed that serum concentration of ET-1 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. MMP-9 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. CONCLUSION Serum ET-1 is higher in subjects with hypertension, hyperglycemia, central obesity or MetS. Serum MMP-9 is higher in subjects diagnosed with MetS or having either one of the MetS parameters. Both circulating levels of ET-1 and MMP-9 are correlated to systolic blood pressure, waist circumference, fasting blood glucose, HDL-C, and age. Further research is needed to fully dissect the role of ET-1 and MMP-9 in the development of cancers, diabetes and cardiovascular disease in relation to MetS.
Collapse
Affiliation(s)
- A. P. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - B. T. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - W. Y. Yau
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - K. S. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - S. S. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - T. L. Chung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - P. M. Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|