1
|
Giacomini F, Baião Barata D, Suk Rho H, Tahmasebi Birgani Z, van Blitterswijk C, Giselbrecht S, Truckenmüller R, Habibović P. Microfluidically Aligned Collagen to Maintain the Phenotype of Tenocytes In Vitro. Adv Healthc Mater 2024; 13:e2303672. [PMID: 37902084 PMCID: PMC11468977 DOI: 10.1002/adhm.202303672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Tendon is a highly organized tissue that transmits forces between muscle and bone. The architecture of the extracellular matrix of tendon, predominantly from collagen type I, is important for maintaining tenocyte phenotype and function. Therefore, in repair and regeneration of damaged and diseased tendon tissue, it is crucial to restore the aligned arrangement of the collagen type I fibers of the original matrix. To this end, a novel, user-friendly microfluidic piggyback platform is developed allowing the controlled patterned formation and alignment of collagen fibers simply on the bottom of culture dishes. Rat tenocytes cultured on the micropatterns of aligned fibrous collagen exhibit a more elongated morphology. The cells also show an increased expression of tenogenic markers at the gene and protein level compared to tenocytes cultured on tissue culture plastic or non-fibrillar collagen coatings. Moreover, using imprinted polystyrene replicas of aligned collagen fibers, this work shows that the fibrillar structure of collagen per se affects the tenocyte morphology, whereas the biochemical nature of collagen plays a prominent role in the expression of tenogenic markers. Beyond the controlled provision of aligned collagen, the microfluidic platform can aid in developing more physiologically relevant in vitro models of tendon and its regeneration.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - David Baião Barata
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas MonizLisbon1649‐028Portugal
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
2
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
4
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
5
|
Zhang H, Chen Y, Fan C, Liu R, Huang J, Zhang Y, Tang C, Zhou B, Chen X, Ju W, Zhao Y, Han J, Wu P, Zhang S, Shen W, Yin Z, Chen X, Ouyang H. Cell-subpopulation alteration and FGF7 activation regulate the function of tendon stem/progenitor cells in 3D microenvironment revealed by single-cell analysis. Biomaterials 2021; 280:121238. [PMID: 34810035 DOI: 10.1016/j.biomaterials.2021.121238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023]
Abstract
Three dimensional (3D) microenvironments more accurately replicate native microenvironments for stem cell maintenance and function compared with two dimensional (2D) microenvironments. However, the molecular mechanisms by which 3D microenvironments regulate stem cell function remain largely unexplored at the single-cell level. Here, using a single-cell analysis and functional analysis, we found not all cell-subpopulations respond to 3D microenvironments based on a systematically 3D gelatin microcarrier culture system we developed for the expansion and function maintenance of hTSPCs. 3D microenvironments alter the cell-subpopulation distribution of human tendon stem/progenitor cells (hTSPCs) by improving the proportion of ICAM1+ITGB8+ and FGF7+CYGB+ subpopulations. We also revealed the activated FGF7 signaling in the two subpopulations is responsible for the enhanced tenogenesis of hTSPCs through cell-cell interactions. The hTSPCs cultured in 3D niche with a specific cell-subpopulation structure exhibited superior stem-cell characteristics and functions both in vitro and in vivo. Together, our study demonstrates that 3D microenvironments can regulate stem-cell function by modulating the critical cell subpopulation and identifies FGF7 as a novel regulator for tenogenic differentiation and tendon regeneration.
Collapse
Affiliation(s)
- Hong Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yangwu Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chunmei Fan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Richun Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jiayun Huang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanjie Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chenqi Tang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Bo Zhou
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Xiaoyi Chen
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Wei Ju
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanyan Zhao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jie Han
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Peishan Wu
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shichen Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China; Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
6
|
Duarte-Olivenza C, Montero JA, Lorda-Diez CI. Effects of Berberine on the Chondrogenic Differentiation of Embryonic Limb Skeletal Progenitors. J Inflamm Res 2021; 14:5001-5011. [PMID: 34616169 PMCID: PMC8488050 DOI: 10.2147/jir.s324292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Berberine (BBR) is an isoquinoline plant alkaloid with demonstrated anti-inflammatory, anti-tumor and immunosuppressive pharmacological properties that functions via multiple signaling pathways and epigenetic modulators. Numerous studies have proposed BBR as a promising therapeutic agent for joint cartilage degeneration, and other connective tissue diseases. Purpose and Methods This work aimed to evaluate the effects of BBR on the growth and differentiation of embryonic skeletal progenitors using the limb mesoderm micromass culture assay. Results Our findings show that at difference of its apoptotic influence on a variety of tumor tissues, cell death was not induced in skeletal progenitors by the addition of 12 or 25 µM BBR concentration to the culture medium. Morphological and transcriptional analysis revealed dual and opposite effects of BBR treatments on chondrogenesis depending on the stage of differentiation of the cultured progenitors. At early stage of culture, BBR was a potent chondrogenic inhibitor, while chondrogenesis was intensified in treatments at advanced stages of culture. The chondrogenic promoting effect was accompanied by a moderate upregulation of gene markers of prehypertrophic cartilage, including ColXa1, alkaline phosphatase Alpl, Runx2, and Indian Hedgehog Ihh. We further observed a positive transcriptional influence of BBR in the expression of DNA methyltransferase genes, Dnmt1, Dnmt3a and Dnmt3b, suggesting a potential involvement of epigenetic factors in its effects. Conclusion Our study uncovers a new pharmacological influence of BBR in cartilage differentiation that must be taken into account in designing clinical protocols for its employment in the treatment of cartilage degenerative diseases.
Collapse
Affiliation(s)
- Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Juan Antonio Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Carlos Ignacio Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| |
Collapse
|
7
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang CY, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12:1293. [PMID: 33637721 PMCID: PMC7910464 DOI: 10.1038/s41467-021-21545-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration. We show that recombinant periostin (rPOSTN) promotes the proliferation and stemness of TSPCs, and maintains the tenogenic potentials of TSPCs in vitro. We also find that rPOSTN protects TSPCs against functional impairment during long-term passage in vitro. For in vivo tendon formation, we construct a biomimetic parallel-aligned collagen scaffold to facilitate TSPC tenogenesis. Using a rat full-cut Achilles tendon defect model, we demonstrate that scaffolds loaded with rPOSTN promote endogenous TSPC recruitment, tendon regeneration and repair with native-like hierarchically organized collagen fibers. Moreover, newly regenerated tendons show recovery of mechanical properties and locomotion functions. The regeneration of functional tendons remains a clinical challenge. Here the authors develop a biomimetic scaffold loaded with recombinant periostin and demonstrate its functionality in promoting tendon stem/progenitor cell recruitment and tenogenic differentiation, and tendon regeneration in a rat full-cut Achilles tendon defect model.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung & Vascular Diseases, Capital Medical University, Beijing, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
9
|
Ackerman JE, Best KT, Muscat SN, Loiselle AE. Metabolic Regulation of Tendon Inflammation and Healing Following Injury. Curr Rheumatol Rep 2021; 23:15. [PMID: 33569739 DOI: 10.1007/s11926-021-00981-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis. RECENT FINDINGS Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood. A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Samantha N Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Comparative Analysis of Tenogenic Gene Expression in Tenocyte-Derived Induced Pluripotent Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells in Response to Biochemical and Biomechanical Stimuli. Stem Cells Int 2021; 2021:8835576. [PMID: 33510795 PMCID: PMC7825360 DOI: 10.1155/2021/8835576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tendon is highly prone to injury, overuse, or age-related degeneration in both humans and horses. Natural healing of injured tendon is poor, and cell-based therapeutic treatment is still a significant clinical challenge. In this study, we extensively investigated the expression of tenogenic genes in equine bone marrow mesenchymal stem cells (BMSCs) and tenocyte-derived induced pluripotent stem cells (teno-iPSCs) stimulated by growth factors (TGF-β3 and BMP12) combined with ectopic expression of tenogenic transcription factor MKX or cyclic uniaxial mechanical stretch. Western blotting revealed that TGF-β3 and BMP12 increased the expression of transcription factors SCX and MKX in both cells, but the tenocyte marker tenomodulin (TNMD) was detected only in BMSCs and upregulated by either inducer. On the other hand, quantitative real-time PCR showed that TGF-β3 increased the expression of EGR1, COL1A2, FMOD, and TNC in BMSCs and SCX, COL1A2, DCN, FMOD, and TNC in teno-iPSCs. BMP12 treatment elevated SCX, MKX, DCN, FMOD, and TNC in teno-iPSCs. Overexpression of MKX increased SCX, DCN, FMOD, and TNC in BMSCs and EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 further enhanced TNC in BMSCs. Moreover, mechanical stretch increased SCX, EGR1, DCN, ELN, and TNC in BMSCs and SCX, MKX, EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 tended to further elevate SCX, ELN, and TNC in BMSCs and SCX, MKX, COL1A2, DCN, and TNC in teno-iPSCs, while BMP12 further uptrended the expression of SCX and DCN in BMSCs and DCN in teno-iPSCs. Additionally, the aforementioned tenogenic inducers also affected the expression of signaling regulators SMAD7, ETV4, and SIRT1 in BMSCs and teno-iPSCs. Taken together, our data demonstrate that, in respect to the tenocyte-lineage-specific gene expression, BMSCs and teno-iPSCs respond differently to the tenogenic stimuli, which may affect the outcome of their application in tendon repair or regeneration.
Collapse
|
11
|
Dede Eren A, Vasilevich A, Eren ED, Sudarsanam P, Tuvshindorj U, de Boer J, Foolen J. Tendon-Derived Biomimetic Surface Topographies Induce Phenotypic Maintenance of Tenocytes In Vitro. Tissue Eng Part A 2020; 27:1023-1036. [PMID: 33045937 DOI: 10.1089/ten.tea.2020.0249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tenocyte niche contains biochemical and biophysical signals that are needed for tendon homeostasis. The tenocyte phenotype is correlated with cell shape in vivo and in vitro, and shape-modifying cues are needed for tenocyte phenotypical maintenance. Indeed, cell shape changes from elongated to spread when cultured on a flat surface, and rat tenocytes lose the expression of phenotypical markers throughout five passages. We hypothesized that tendon gene expression can be preserved by culturing cells in the native tendon shape. To this end, we reproduced the tendon topographical landscape into tissue culture polystyrene, using imprinting technology. We confirmed that the imprints forced the cells into a more elongated shape, which correlated with the level of Scleraxis expression. When we cultured the tenocytes for 7 days on flat surfaces and tendon imprints, we observed a decline in tenogenic marker expression on flat but not on imprints. This research demonstrates that native tendon topography is an important factor contributing to the tenocyte phenotype. Tendon imprints therefore provide a powerful platform to explore the effect of instructive cues originating from native tendon topography on guiding cell shape, phenotype, and function of tendon-related cells.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aliaksey Vasilevich
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Phanikrishna Sudarsanam
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Urandelger Tuvshindorj
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,MERLN Institute for Technology Inspired Regenerative Medicine, Instructive Biomaterial Engineering, Maastricht University, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Riasat K, Bardell D, Goljanek-Whysall K, Clegg PD, Peffers MJ. Epigenetic mechanisms in Tendon Ageing. Br Med Bull 2020; 135:90-107. [PMID: 32827252 PMCID: PMC7585832 DOI: 10.1093/bmb/ldaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tendon is a composite material with a well-ordered hierarchical structure exhibiting viscoelastic properties designed to transfer force. It is recognized that the incidence of tendon injury increases with age, suggesting a deterioration in homeostatic mechanisms or reparative processes. This review summarizes epigenetic mechanisms identified in ageing healthy tendon. SOURCES OF DATA We searched multiple databases to produce a systematic review on the role of epigenetic mechanisms in tendon ageing. AREAS OF AGREEMENT Epigenetic mechanisms are important in predisposing ageing tendon to injury. AREAS OF CONTROVERSY The relative importance of epigenetic mechanisms are unknown in terms of promoting healthy ageing. It is also unknown whether these changes represent protective mechanisms to function or predispose to pathology. GROWING POINT Epigenetic markers in ageing tendon, which are under-researched including genome-wide chromatin accessibility, should be investigated. AREAS TIMELY FOR DEVELOPING RESEARCH Metanalysis through integration of multiple datasets and platforms will enable a holistic understanding of the epigenome in ageing and its relevance to disease.
Collapse
Affiliation(s)
- Kiran Riasat
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - David Bardell
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK.,Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
13
|
Lui PPY, Wong CM. Biology of Tendon Stem Cells and Tendon in Aging. Front Genet 2020; 10:1338. [PMID: 32010194 PMCID: PMC6976534 DOI: 10.3389/fgene.2019.01338] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Both tendon injuries and tendinopathies, particularly rotator cuff tears, increase with tendon aging. Tendon stem cells play important roles in promoting tendon growth, maintenance, and repair. Aged tendons show a decline in regenerative potential coupled with a loss of stem cell function. Recent studies draw attention to aging primarily a disorder of stem cells. The micro-environment (“niche”) where stem cells resided in vivo provides signals that direct them to metabolize, self-renew, differentiate, or remain quiescent. These signals include receptors and secreted soluble factors for cell-cell communication, extracellular matrix, oxidative stress, and vascularity. Both intrinsic cellular deficits and aged niche, coupled with age-associated systemic changes of hormonal and metabolic signals can inhibit or alter the functions of tendon stem cells, resulting in reduced fitness of these primitive cells and hence more frequent injuries and poor outcomes of tendon repair. This review aims to summarize the biological changes of aged tendons. The biological changes of tendon stem cells in aging are reviewed after a systematic search of the PubMed. Relevant factors of stem cell aging including cell-intrinsic factors, changes of microenvironment, and age-associated systemic changes of hormonal and metabolic signals are examined, with findings related to tendon stem cells highlighted when literature is available. Future research directions on the aging mechanisms of tendon stem cells are discussed. Better understanding of the molecular mechanisms underlying the functional decline of aged tendon stem cells would provide insight for the rational design of rejuvenating therapies.
Collapse
Affiliation(s)
| | - Chi Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Yang F, Zhang A, Richardson DW. Regulation of the tenogenic gene expression in equine tenocyte-derived induced pluripotent stem cells by mechanical loading and Mohawk. Stem Cell Res 2019; 39:101489. [PMID: 31277043 PMCID: PMC7082636 DOI: 10.1016/j.scr.2019.101489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapeutic strategies afford major potential advantages in the repair of injured tendons. Generation of induced pluripotent stem cells (iPSCs) expands cell sources for “regenerative” therapy. However, its application in tendon repair is still limited and the effects remain unclear. In this study, equine tenocyte-derived iPSCs (teno-iPSCs) were generated by expressing four Yamanaka factors. Compared to parental tenocytes and bone marrow derived mesenchymal stem cells (BMSCs), the transcriptional activities of lineage-specific genes, including Mkx, Col1A2, Col14, DCN, ELN, FMOD, and TNC, were highly repressed in the resulting teno-iPSCs. Exposure to cyclic uniaxial mechanical loading increased the expression of Scx, Egr1, Col1A2, DCN, and TNC in teno-iPSCs and the expression of Scx, Egr1, DCN, and TNC in BMSCs. Reintroduction of tenogenic transcription factor Mohawk (Mkx) upregulated the expression of DCN in teno-iPSCs and the expression of Scx, Col14, and FMOD in BMSCs. Mechanical loading combined with ectopic expression of equine Mkx further enhanced the expression of Egr1, Col1A2, DCN, and TNC in teno-iPSCs and the expression of Scx, Egr1, and TNC in BMSCs. These data suggest that the repressed lineage-specific genes in the teno-iPSCs can be re-activated by mechanical loading and ectopic expression of Mkx. Our findings offer new insights into the application of iPSCs for basic and clinic research in tendon repair.
Collapse
Affiliation(s)
- Feikun Yang
- Department of Clinic Studies at New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, United States of America.
| | - Aiwu Zhang
- Department of Clinic Studies at New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, United States of America.
| | - Dean W Richardson
- Department of Clinic Studies at New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, United States of America.
| |
Collapse
|
15
|
Walia B, Huang AH. Tendon stem progenitor cells: Understanding the biology to inform therapeutic strategies for tendon repair. J Orthop Res 2019; 37:1270-1280. [PMID: 30270569 PMCID: PMC6823601 DOI: 10.1002/jor.24156] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Tendon and ligament injuries are a leading cause of healthcare visits with significant impact in terms of economic cost and reduced quality of life. To date, reparative strategies remain largely restricted to conservative treatment or surgical repair. However, these therapies fail to restore native tendon structure and function; thus, the tissue may re-rupture or degenerate with time. To improve tendon healing, one promising strategy may be harnessing the innate potential of resident tendon stem/progenitor cells (TSPCs) to guide tenogenic regeneration. In this review, we outline recent advances in the identification and characterization of putative TSPC populations, and discuss biochemical, biomechanical, and biomaterial methods employed for their culture and differentiation. Finally, we identify limitations in our current understanding of TSPC biology, key challenges for their use, and potential therapeutic strategies to inform cell-based tendon repair. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1270-1280, 2019.
Collapse
Affiliation(s)
- Bhavita Walia
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H. Huang
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
16
|
Khavinson V, Trofimova S, Trofimov A, Solomin I. Molecular-Physiological Aspects of Regulatory Effect of Peptide Retinoprotectors. Stem Cell Rev Rep 2019; 15:439-442. [PMID: 30859383 DOI: 10.1007/s12015-019-09882-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal diseases were always difficult problem for clinical ophthalmology. Modern methods of their treatment only decrease risk of complications, however in Russia was created better technology for this purpose: peptide bioregulators, which were made by sequential adding of amino acids one to another, binding with the promoter region of genes, and promoting retinoprotective effect by regulation of their expression, improving the state of the retina.
Collapse
Affiliation(s)
- V Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia.,Pavlov Institute of Physiology RAS, Saint Petersburg, Russia
| | - S Trofimova
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia
| | - A Trofimov
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia
| | - I Solomin
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia.
| |
Collapse
|
17
|
Ho TC, Tsai SH, Yeh SI, Chen SL, Tung KY, Chien HY, Lu YC, Huang CH, Tsao YP. PEDF-derived peptide promotes tendon regeneration through its mitogenic effect on tendon stem/progenitor cells. Stem Cell Res Ther 2019; 10:2. [PMID: 30606221 PMCID: PMC6318926 DOI: 10.1186/s13287-018-1110-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. Methods Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. Results TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU− TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. Conclusions The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, No. 1 Jen Ai road, section 1, Taipei, 100, Taiwan
| | - Kwang-Yi Tung
- Department of Plastic Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei, 10449, Taiwan
| | - Hsin-Yu Chien
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yung-Chang Lu
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Chang-Hung Huang
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
18
|
Vermeulen S, Vasilevich A, Tsiapalis D, Roumans N, Vroemen P, Beijer NRM, Dede Eren A, Zeugolis D, de Boer J. Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomater 2019; 83:277-290. [PMID: 30394345 DOI: 10.1016/j.actbio.2018.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023]
Abstract
Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aliaksei Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Nadia Roumans
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Pascal Vroemen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; University Eye Clinic Maastricht UMC+, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nick R M Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aysegul Dede Eren
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
19
|
Zhang C, Zhang E, Yang L, Tu W, Lin J, Yuan C, Bunpetch V, Chen X, Ouyang H. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials 2018; 172:66-82. [PMID: 29723756 DOI: 10.1016/j.biomaterials.2018.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 12/13/2022]
Abstract
Tendon stem/progenitor cells (TSPCs) have been identified as a rare population in tendons. In vitro propagation is indispensable to obtain sufficient quantities of TSPCs for therapies. However, culture-expanded TSPCs are prone to lose their phenotype, resulting in an inferior repaired capability. And little is known about the underlying mechanism. Here, we found that altered gene expression was associated with increased histone deacetylase (HDAC) activity and expression of HDAC subtypes. Therefore, we exposed ScxGFP mice-derived TSPCs to HDAC inhibitor (HDACi) trichostatin A (TSA) or valproic acid (VPA), and observed significant expansion of ScxGFP+ cells without altering phenotypic properties. TSA upregulated Scx expression by inhibiting HDAC1 and -3, and increasing the H3K27Ac level of Tgfb1 and -2 genome region. Additionally, cell sheets formed from TSA-pretreated mTSPCs retained the ability to accelerate tendon repair in vivo. Thus, our results uncovered an unrecognized role of HDACi in phenotypic and functional mTSPCs expansion to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Can Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Institute of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Erchen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Long Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Wenjing Tu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Chunhui Yuan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Varisara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Zhang YJ, Chen X, Li G, Chan KM, Heng BC, Yin Z, Ouyang HW. Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Transl Med 2018; 7:404-414. [PMID: 29573225 PMCID: PMC5905226 DOI: 10.1002/sctm.17-0206] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising. With the development of stem cell biology and chemical biology, strategies that use inductive tenogenic factors to program stem cell fate in situ are the most easily and readily translatable to clinical applications. In this review, we focus on bioactive molecules that can potentially induce tenogenesis in adult stem cells, and we summarize the various differentiation factors found in comparative studies. Moreover, we discuss the molecular regulatory mechanisms of tenogenesis, and we examine the various challenges in developing standardized protocols for achieving efficient and reproducible tenogenesis. Finally, we discuss and predict future directions for tendon regeneration. Stem Cells Translational Medicine 2018;7:404-414.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Gang Li
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Kai-Ming Chan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
22
|
Jiang L, Qin Y, Lei F, Chen X, Zhou Z. Retinoic acid receptors α and γ are involved in antioxidative protection in renal tubular epithelial cells injury induced by hypoxia/reoxygenation. Free Radic Res 2017; 51:873-885. [PMID: 29096559 DOI: 10.1080/10715762.2017.1387655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common outcome in various chronic kidney diseases. Injury to renal tubular epithelial cell (RTEC) is major link in RIF. Hypoxia is one of the common factors for RTEC damage. Retinoic acid receptors (RARs), RARα, RARβ and RARγ, are evolutionary conserved and pleiotropic proteins that have been involved in various cellular functions, including proliferation, differentiation, apoptosis, and transcription. Recently, we discovered that aberrant expression of RARs was involved in the development of RIF in rats. Here, we investigated the role of RARs in the hypoxia/reoxygenation (HR) damage model in RTEC with virus-based delivery vectors to knockdown or overexpress RARs. Relevant indicators were detected. Our results showed that HR inhibited RARα and RARγ expressions in a time-dependent manner in RTECs; however, the expression of RARβ was not changed obviously. RARα and RARγ overexpression could protect cells from oxidative stress-induced injury by inhibiting HR-induced intracellular superoxide anion (O2-) generation, cell viability and mitochondria membrane potential (MMP) decrease and transforming growth factor β1 (TGF-β1) expression and promoting endogenous antioxidant defense components, superoxide dismutase (SOD) and glutathione (GSH). Meanwhile, inhibition of RARα and RARγ expressions by small interference RNAs (siRNA) resulted in a less resistance of RTEC to HR as shown in increased O2- production and TGF-β1 expression and decreased cell viability, MMP, SOD and GSH levels. These data indicates that RARα and RARγ act as positive regulators to offset oxidative damage and profibrosis cytokine accumulation and therefore has an antioxidative effect.
Collapse
Affiliation(s)
- Ling Jiang
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Yuanhan Qin
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Fengying Lei
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Xiuping Chen
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Zhiqiang Zhou
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| |
Collapse
|
23
|
Webb S, Gabrelow C, Pierce J, Gibb E, Elliott J. Erratum to: Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitro. Stem Cell Res Ther 2016; 7:62. [PMID: 27106859 PMCID: PMC4841966 DOI: 10.1186/s13287-016-0327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/07/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stuart Webb
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Chase Gabrelow
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - James Pierce
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Edwin Gibb
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Jimmy Elliott
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA.
| |
Collapse
|