1
|
Koung Ngeun S, Shimizu M, Kaneda M. Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation. BIOLOGY 2023; 12:1312. [PMID: 37887022 PMCID: PMC10603895 DOI: 10.3390/biology12101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| |
Collapse
|
2
|
Hayashi RG, Borghesi J, Mario LC, Rabelo ACS, de Almeida da Anunciação AR, Lima MF, Miglino MA, de Oliveira Favaron P, Carreira ACO. Immunophenotyping of progenitor cells from articular cartilage of New Zealand Rabbits (Oryctolagus cuniculus). Tissue Cell 2022; 75:101742. [DOI: 10.1016/j.tice.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
|
3
|
Karam RG, Motta LCB, Almeida MFD, Bridi A, Silveira JCD, Ambrósio CE. Secretion pattern of canine amniotic stem cells derived extracellular vesicles. Anim Reprod 2022; 19:e20220063. [DOI: 10.1590/1984-3143-ar2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
|
4
|
Phenotypical Characterization and Neurogenic Differentiation of Rabbit Adipose Tissue-Derived Mesenchymal Stem Cells. Genes (Basel) 2021; 12:genes12030431. [PMID: 33802902 PMCID: PMC8002684 DOI: 10.3390/genes12030431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Although the rabbit is a frequently used biological model, the phenotype of rabbit adipose-derived mesenchymal stem cells (rAT-MSCs) is not well characterized. One of the reasons is the absence of specific anti-rabbit antibodies. The study aimed to characterize rAT-MSCs using flow cytometry and PCR methods, especially digital droplet PCR, which confirmed the expression of selected markers at the mRNA level. A combination of these methods validated the expression of MSCs markers (CD29, CD44, CD73, CD90 and CD105). In addition, cells were also positive for CD49f, vimentin, desmin, α-SMA, ALDH and also for the pluripotent markers: NANOG, OCT4 and SOX2. Moreover, the present study proved the ability of rAT-MSCs to differentiate into a neurogenic lineage based on the confirmed expression of neuronal markers ENO2 and MAP2. Obtained results suggest that rAT-MSCs have, despite the slight differences in marker expression, the similar phenotype as human AT-MSCs and possess the neurodifferentiation ability. Accordingly, rAT-MSCs should be subjected to further studies with potential application in veterinary medicine but also, in case of their cryopreservation, as a source of genetic information of endangered species stored in the gene bank.
Collapse
|
5
|
de Oliveira Pinheiro A, Lara VM, Souza AF, Casals JB, Bressan FF, Fantinato Neto P, Oliveira VC, Martins DS, Ambrosio CE. Characterization and Immunomodulation of Canine Amniotic Membrane Stem Cells. Stem Cells Cloning 2020; 13:43-55. [PMID: 32440160 PMCID: PMC7217707 DOI: 10.2147/sccaa.s237686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Amniotic membrane stem cells have a high capacity of proliferation, cell expansion, and plasticity, as well as immunomodulatory properties that contribute to maternal-fetal tolerance. Owing to the lack of research on human amniotic membrane at different gestational stages, the canine model is considered ideal because of its genetic and physiological similarities. We aimed to characterize the canine amniotic membrane (CAM) cell lineage in different gestational stages and evaluate the expression of immunomodulatory genes. MATERIALS AND METHODS Twenty CAMs from early (20-30 days) (n=7), mid- (31-45 days) (n=7), and late gestation (46-63 days) (n=6) stages were studied. The cell features were assessed by cell viability tests, growth curve, colony-forming units, in vitro differentiation, cell labeling for different immunophenotypes, and pluripotent potential markers. The cells were subjected to RT-PCR and qPCR analysis to determine the expression of IDO, HGF, EGF, PGE2, and IL-10 genes. RESULTS CAM cells exhibited a fibroblastoid morphology and adherence to plastic with an average cell viability of 78.5%. The growth curve indicated a growth peak in the second passage and we obtained an average of 138.2 colonies. Osteogenic, chondrogenic, and adipogenic lineages were confirmed by in vitro differentiation assays. Cellular immunophenotyping experiments confirmed the presence of positive mesenchymal markers (CD90 and CD105) and the low or negative expression of hematopoietic markers (CD45 and CD34). Qualitative analysis of the immunomodulatory functions indicated the expression of the IDO, HGF, EGF5, and PGE2 genes. When stimulated by interferon-gamma, CAM cells exhibited higher IDO levels throughout gestation. CONCLUSION The CAMs from different gestational stages presented features consistent with mesenchymal stem cell lineage; better results were observed during the late gestation stage. Therefore, the gestational stage is a key factor that may influence the functionality of therapies when using fetal membrane tissues from different periods of pregnancy.
Collapse
Affiliation(s)
- Alessandra de Oliveira Pinheiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Valéria M Lara
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Aline F Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Fabiana F Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vanessa C Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Daniele S Martins
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Carlos E Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
6
|
Jia Z, Zhu F, Li X, Liang Q, Zhuo Z, Huang J, Duan L, Xiong J, Wang D. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:541-551. [DOI: 10.1016/j.msec.2019.01.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
7
|
Borghesi J, Ferreira Lima M, Mario LC, de Almeida da Anunciação AR, Silveira Rabelo AC, Giancoli Kato Cano da Silva M, Assunpção Fernandes F, Miglino MA, Oliveira Carreira AC, Oliveira Favaron P. Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation. Tissue Cell 2019; 58:99-106. [PMID: 31133253 DOI: 10.1016/j.tice.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Abstract
The amniotic membrane can be considered as one of the sources of isolation of these cells, since it is found in the fetal maternal interface and has low immunogenicity. Mesenchymal stromal/stem cells (MSCs) have not been identified in canine amniotic membrane (AMC). Therefore, our objective was to isolate, culture, characterize and differentiate cells derived from canine amniotic membrane (AMC) and to verify its immunological and tumorigenic potential. For this, 12 dogs fetuses of each gestational age 32, 43 and 55 days were used, and the isolation and culture of the AMC were performed. We observed that the cells presented fibroblastoid morphology and high confluence even after freezing. We also observed that, when induced, they were able to differentiate into osteogenic, adipogenic, and chondrogenic cells, as well as being CD34- and CD105+. Regarding the immunological markers, we found that IL-1, IL-2, IL-6, IL-10 and MHC II were not expressed, whereas MHC I was expressed. After application of AMC cells in nude mice we can verify that there was no tumor formation. Based on this, we conclude that canine amniotic membrane is a good and accessible source for obtaining MSCs of low immunogenic and tumorigenic potential for veterinary therapeutic applications.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil.
| | | | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Fausto Assunpção Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, Internal Medicine Department, University, Sao Paulo, Sao Paulo, Brazil.
| | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| |
Collapse
|
8
|
Fetal Membranes-Derived Stem Cells Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:235-244. [PMID: 29204836 DOI: 10.1007/978-3-319-69194-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.
Collapse
|