1
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2025; 48:43-66. [PMID: 39254779 PMCID: PMC11850569 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
2
|
Zeng X, Gyoja F, Cui Y, Loza M, Kusakabe T, Nakai K. Comparative single-cell transcriptomic analysis reveals putative differentiation drivers and potential origin of vertebrate retina. NAR Genom Bioinform 2024; 6:lqae149. [PMID: 39534499 PMCID: PMC11555436 DOI: 10.1093/nargab/lqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Despite known single-cell expression profiles in vertebrate retinas, understanding of their developmental and evolutionary expression patterns among homologous cell classes remains limited. We examined and compared approximately 240 000 retinal cells from four species and found significant similarities among homologous cell classes, indicating inherent regulatory patterns. To understand these shared patterns, we constructed gene regulatory networks for each developmental stage for three of these species. We identified 690 regulons governed by 530 regulators across three species, along with 10 common cell class-specific regulators and 16 highly preserved regulons. RNA velocity analysis pinpointed conserved putative driver genes and regulators to retinal cell differentiation in both mouse and zebrafish. Investigation of the origins of retinal cells by examining conserved expression patterns between vertebrate retinal cells and invertebrate Ciona intestinalis photoreceptor-related cells implied functional similarities in light transduction mechanisms. Our findings offer insights into the evolutionarily conserved regulatory frameworks and differentiation drivers of vertebrate retinal cells.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Fuki Gyoja
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Yang Cui
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Martin Loza
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
3
|
Dorgau B, Collin J, Rozanska A, Zerti D, Unsworth A, Crosier M, Hussain R, Coxhead J, Dhanaseelan T, Patel A, Sowden JC, FitzPatrick DR, Queen R, Lako M. Single-cell analyses reveal transient retinal progenitor cells in the ciliary margin of developing human retina. Nat Commun 2024; 15:3567. [PMID: 38670973 PMCID: PMC11053058 DOI: 10.1038/s41467-024-47933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Moira Crosier
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Aara Patel
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
4
|
Li R, Liu J, Yi P, Yang X, Chen J, Zhao C, Liao X, Wang X, Xu Z, Lu H, Li H, Zhang Z, Liu X, Xiang J, Hu K, Qi H, Yu J, Yang P, Hou S. Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206623. [PMID: 37017569 DOI: 10.1002/advs.202206623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/24/2023] [Indexed: 06/04/2023]
Abstract
The underlying mechanisms that determine gene expression and chromatin accessibility in retinogenesis are poorly understood. Herein, single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing are performed on human embryonic eye samples obtained 9-26 weeks after conception to explore the heterogeneity of retinal progenitor cells (RPCs) and neurogenic RPCs. The differentiation trajectory from RPCs to 7 major types of retinal cells are verified. Subsequently, diverse lineage-determining transcription factors are identified and their gene regulatory networks are refined at the transcriptomic and epigenomic levels. Treatment of retinospheres, with the inhibitor of RE1 silencing transcription factor, X5050, induces more neurogenesis with the regular arrangement, and a decrease in Müller glial cells. The signatures of major retinal cells and their correlation with pathogenic genes associated with multiple ocular diseases, including uveitis and age-related macular degeneration are also described. A framework for the integrated exploration of single-cell developmental dynamics of the human primary retina is provided.
Collapse
Affiliation(s)
- Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Xianli Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Jun Chen
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongshun Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Junjie Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongbo Qi
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, P. R. China
| |
Collapse
|
5
|
Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:227-269. [PMID: 37678973 DOI: 10.1016/bs.pmbts.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macular degeneration (MD) is a group of diseases characterized by irreversible and progressive vision loss. Patients with MD suffer from severely impaired central vision, especially elderly people. Currently, only one type of MD, wet age-related macular degeneration (AMD), can be treated with anti-vascular endothelium growth factor (VEGF) drugs. Other types of MD remain difficult to treat. With the advent of human pluripotent stem cells (hPSCs) and their differentiation into retinal pigmented epithelium (RPE), it is promising to treat patients with MD by transplantation of hPSC-derived RPE into the subretinal space. In this review, the current progress in hPSC-derived RPE transplantation for the treatment of patients with MD is described from bench to bedside, including hPSC differentiation into RPE and the characterization and usage of hPSC-derived RPE for transplantation into patients with MD.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Narta K, Teltumbade MR, Vishal M, Sadaf S, Faruq M, Jama H, Waseem N, Rao A, Sen A, Ray K, Mukhopadhyay A. Whole Exome Sequencing Reveals Novel Candidate Genes in Familial Forms of Glaucomatous Neurodegeneration. Genes (Basel) 2023; 14:495. [PMID: 36833422 PMCID: PMC9957298 DOI: 10.3390/genes14020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.
Collapse
Affiliation(s)
- Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Ramesh Teltumbade
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vishal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samreen Sadaf
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
| | - Mohd. Faruq
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hodan Jama
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Naushin Waseem
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Aparna Rao
- L. V. Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Kunal Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Translational Medicine Unit, Biomedical Research & Innovation Centre, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
7
|
Involvement of a Basic Helix-Loop-Helix Gene BHLHE40 in Specification of Chicken Retinal Pigment Epithelium. J Dev Biol 2022; 10:jdb10040045. [PMID: 36412639 PMCID: PMC9680343 DOI: 10.3390/jdb10040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
The first event of differentiation and morphogenesis in the optic vesicle (OV) is specification of the neural retina (NR) and retinal pigment epithelium (RPE), separating the inner and outer layers of the optic cup, respectively. Here, we focus on a basic helix-loop-helix gene, BHLHE40, which has been shown to be expressed by the developing RPE in mice and zebrafish. Firstly, we examined the expression pattern of BHLHE40 in the developing chicken eye primordia by in situ hybridization. Secondly, BHLHE40 overexpression was performed with in ovo electroporation and its effects on optic cup morphology and expression of NR and RPE marker genes were examined. Thirdly, we examined the expression pattern of BHLHE40 in LHX1-overexpressed optic cup. BHLHE40 expression emerged in a subset of cells of the OV at Hamburger and Hamilton stage 14 and became confined to the outer layer of the OV and the ciliary marginal zone of the retina by stage 17. BHLHE40 overexpression in the prospective NR resulted in ectopic induction of OTX2 and repression of VSX2. Conversely, BHLHE40 was repressed in the second NR after LHX1 overexpression. These results suggest that emergence of BHLHE40 expression in the OV is involved in initial RPE specification and that BHLHE40 plays a role in separation of the early OV domains by maintaining OTX2 expression and antagonizing an NR developmental program.
Collapse
|
8
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
9
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
10
|
Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, Dehainault C, Hua C, Fréneaux P, Reichman S, Karboul N, Biton A, Mirabal-Ortega L, Larcher M, Brulard C, Arrufat S, Nicolas A, Elarouci N, Popova T, Némati F, Decaudin D, Gentien D, Baulande S, Mariani O, Dufour F, Guibert S, Vallot C, Rouic LLL, Matet A, Desjardins L, Pascual-Pasto G, Suñol M, Catala-Mora J, Llano GC, Couturier J, Barillot E, Schaiquevich P, Gauthier-Villars M, Stoppa-Lyonnet D, Golmard L, Houdayer C, Brisse H, Bernard-Pierrot I, Letouzé E, Viari A, Saule S, Sastre-Garau X, Doz F, Carcaboso AM, Cassoux N, Pouponnot C, Goureau O, Chantada G, de Reyniès A, Aerts I, Radvanyi F. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 2021; 12:5578. [PMID: 34552068 PMCID: PMC8458383 DOI: 10.1038/s41467-021-25792-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Jing Liu
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniela Ottaviani
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Meriem Sefta
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Céline Desbrousses
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Elodie Chapeaublanc
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Rosario Aschero
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Nanor Sirab
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Fabiana Lubieniecki
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Gabriela Lamas
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Laurie Tonon
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Catherine Dehainault
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France
| | - Clément Hua
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Paul Fréneaux
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Narjesse Karboul
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Anne Biton
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France ,grid.428999.70000 0001 2353 6535Present Address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, 75015 Paris, France
| | - Liliana Mirabal-Ortega
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Magalie Larcher
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Céline Brulard
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.411777.30000 0004 1765 1563Present Address: INSERM U930, CHU Bretonneau, 37000 Tours, France
| | - Sandrine Arrufat
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - André Nicolas
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Nabila Elarouci
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Tatiana Popova
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Fariba Némati
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Didier Decaudin
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - David Gentien
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, NGS Platform, 75005 Paris, France
| | - Odette Mariani
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Florent Dufour
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Sylvain Guibert
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Céline Vallot
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Livia Lumbroso-Le Rouic
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Alexandre Matet
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Laurence Desjardins
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Guillem Pascual-Pasto
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Mariona Suñol
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jaume Catala-Mora
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Genoveva Correa Llano
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jérôme Couturier
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Emmanuel Barillot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France
| | - Paula Schaiquevich
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marion Gauthier-Villars
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Lisa Golmard
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Claude Houdayer
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France ,grid.41724.34Present Address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France
| | - Hervé Brisse
- grid.418596.70000 0004 0639 6384Département d’Imagerie Médicale, Institut Curie, 75005 Paris, France
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Eric Letouzé
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France ,grid.508487.60000 0004 7885 7602Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - Alain Viari
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Simon Saule
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Xavier Sastre-Garau
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.414145.10000 0004 1765 2136Present Address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - François Doz
- grid.508487.60000 0004 7885 7602Université de Paris, Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - Angel M. Carcaboso
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Nathalie Cassoux
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Celio Pouponnot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Guillermo Chantada
- grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Aurélien de Reyniès
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Isabelle Aerts
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - François Radvanyi
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| |
Collapse
|
11
|
Vassalli QA, Colantuono C, Nittoli V, Ferraioli A, Fasano G, Berruto F, Chiusano ML, Kelsh RN, Sordino P, Locascio A. Onecut Regulates Core Components of the Molecular Machinery for Neurotransmission in Photoreceptor Differentiation. Front Cell Dev Biol 2021; 9:602450. [PMID: 33816460 PMCID: PMC8012850 DOI: 10.3389/fcell.2021.602450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Photoreceptor cells (PRC) are neurons highly specialized for sensing light stimuli and have considerably diversified during evolution. The genetic mechanisms that underlie photoreceptor differentiation and accompanied the progressive increase in complexity and diversification of this sensory cell type are a matter of great interest in the field. A role of the homeodomain transcription factor Onecut (Oc) in photoreceptor cell formation is proposed throughout multicellular organisms. However, knowledge of the identity of the Oc downstream-acting factors that mediate specific tasks in the differentiation of the PRC remains limited. Here, we used transgenic perturbation of the Ciona robusta Oc protein to show its requirement for ciliary PRC differentiation. Then, transcriptome profiling between the trans-activation and trans-repression Oc phenotypes identified differentially expressed genes that are enriched in exocytosis, calcium homeostasis, and neurotransmission. Finally, comparison of RNA-Seq datasets in Ciona and mouse identifies a set of Oc downstream genes conserved between tunicates and vertebrates. The transcription factor Oc emerges as a key regulator of neurotransmission in retinal cell types.
Collapse
Affiliation(s)
- Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Chiara Colantuono
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Ferraioli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giulia Fasano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Federica Berruto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Luisa Chiusano
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Agriculture, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Robert Neil Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, London, United Kingdom
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
12
|
Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci Rep 2020; 10:11828. [PMID: 32678240 PMCID: PMC7366935 DOI: 10.1038/s41598-020-68811-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-β (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.
Collapse
|
13
|
Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci 2020; 10:brainsci10060344. [PMID: 32503260 PMCID: PMC7348931 DOI: 10.3390/brainsci10060344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.
Collapse
|
14
|
Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, Hsu CC, Yang HY, Hwang DK, Chen SJ, Tsai ML, Lai YH, Tzeng Y, Chang CC, Chiou SH. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater 2020; 101:484-494. [PMID: 31672582 DOI: 10.1016/j.actbio.2019.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
Nanodiamonds (NDs) are considered to be relatively safe carbon nanomaterials used for the transmission of DNA, proteins and drugs. The feasibility of utilizing the NDs to deliver CRISPR-Cas9 system for gene editing has not been clearly studied. Therefore, in this study, we aimed to use NDs as the carriers of CRISPR-Cas9 components designed to introduce the mutation in RS1 gene associated with X-linked retinoschisis (XLRS). ND particles with a diameter of 3 nm were functionalized by carboxylation of the surface and covalently conjugated with fluorescent mCherry protein. Two linear DNA constructs were attached to the conjugated mCherry: one encoded Cas9 endonuclease and GFP reporter, another encoded sgRNA and contained insert of HDR template designed to introduce RS1 c.625C>T mutation. Such nanoparticles were successfully delivered and internalized by human iPSCs and mouse retinas, the efficiency of internalization was significantly improved by mixing with BSA. The delivery of ND particles led to introduction of RS1 c.625C>T mutation in both human iPSCs and mouse retinas. Rs1 gene editing in mouse retinas resulted in several pathological features typical for XLRS, such as aberrant photoreceptor structure. To conclude, our ND-based CRISPR-Cas9 delivery system can be utilized as a tool for creating in vitro and in vivo disease models of XLRS. STATEMENT OF SIGNIFICANCE: X-linked retinoschisis (XLRS) is a prevalent hereditary retinal disease, which is caused by mutations in RS1 gene, whose product is important for structural organization of the retina. The recent development of genome editing techniques such as CRISPR-Cas9 significantly improved the prospects for better understanding the pathology and development of treatment for this disease. Firstly, gene editing can allow development of appropriate in vitro and in vivo disease models; secondly, CRISPR-Cas9 can be applied for gene therapy by removing the disease-causative mutation in vivo. The major prerequisite for these approaches is to develop safe and efficient CRISPR-Cas9 delivery system. In this study, we tested specifically modified nanodiamonds for such a delivery system. We were able to introduce Rs1 mutation into the mouse retina and, importantly, observed several XLRS-specific effects.
Collapse
|
15
|
Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. Int J Mol Sci 2019; 20:ijms20020241. [PMID: 30634448 PMCID: PMC6358770 DOI: 10.3390/ijms20020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is the eye disease with the highest epidemic incidence, and has great impact on the aged population. Wet-type AMD commonly has the feature of neovascularization, which destroys the normal retinal structure and visual function. So far, effective therapy options for rescuing visual function in advanced AMD patients are highly limited, especially in wet-type AMD, in which the retinal pigmented epithelium and Bruch's membrane structure (RPE-BM) are destroyed by abnormal angiogenesis. Anti-VEGF treatment is an effective remedy for the latter type of AMD; however, it is not a curative therapy. Therefore, reconstruction of the complex structure of RPE-BM and controlled release of angiogenesis inhibitors are strongly required for sustained therapy. The major purpose of this study was to develop a dual function biomimetic material, which could mimic the RPE-BM structure and ensure slow release of angiogenesis inhibitor as a novel therapeutic strategy for wet AMD. We herein utilized plasma-modified polydimethylsiloxane (PDMS) sheet to create a biomimetic scaffold mimicking subretinal BM. This dual-surface biomimetic scaffold was coated with laminin and dexamethasone-loaded liposomes. The top surface of PDMS was covalently grafted with laminin and used for cultivation of the retinal pigment epithelial cells differentiated from human induced pluripotent stem cells (hiPSC-RPE). To reach the objective of inhibiting angiogenesis required for treatment of wet AMD, the bottom surface of modified PDMS membrane was further loaded with dexamethasone-containing liposomes via biotin-streptavidin linkage. We demonstrated that hiPSC-RPE cells could proliferate, express normal RPE-specific genes and maintain their phenotype on laminin-coated PDMS membrane, including phagocytosis ability, and secretion of anti-angiogenesis factor PEDF. By using in vitro HUVEC angiogenesis assay, we showed that application of our membrane could suppress oxidative stress-induced angiogenesis, which was manifested in decreased secretion of VEGF by RPE cells and suppression of vascularization. In conclusion, we propose modified biomimetic material for dual delivery of RPE cells and liposome-enveloped dexamethasone, which can be potentially applied for AMD therapy.
Collapse
|