1
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
3
|
Farshbaf A, Mottaghi M, Mohammadi M, Monsef K, Mirhashemi M, Attaran Khorasani A, Mohtasham N. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024; 89:102451. [PMID: 38936200 DOI: 10.1016/j.tice.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Dental pulp stem cells (DPSCs) originate from the neural crest and the present mesenchymal phenotype showed self-renewal capabilities and can differentiate into at least three lineages. DPSCs are easily isolated with minimal harm, no notable ethical constraints, and without general anesthesia to the donor individuals. Furthermore, cryopreservation of DPSCs provides this opportunity for autologous transplantation in future studies without fundamental changes in stemness, viability, proliferation, and differentiating features. Current approaches for pulp tissue regeneration include pulp revascularization, cell-homing-based regenerative endodontic treatment (RET), cell-transplantation-based regenerative endodontic treatment, and allogeneic transplantation. In recent years, a novel technology, organoid, provides a mimic physiological condition and tissue construct that can be applied for tissue engineering, genetic manipulation, disease modeling, single-cell high throughput analysis, living biobank, cryopreserving and maintaining cells, and therapeutic approaches based on personalized medicine. The organoids can be a reliable preclinical prediction model for evaluating cell behavior, monitoring drug response or resistance, and comparing healthy and pathological conditions for therapeutic and prognostic approaches. In the current review, we focused on the promising application of 3D organoid technology based on DPSCs in oral and maxillofacial tissue regeneration. We discussed encountering challenges and limitations, and found promising solutions to overcome obstacles.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Mottaghi
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Mohammadi
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kouros Monsef
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, and Oral and Maxillofacial Diseases Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
5
|
Shah P, Aghazadeh M, Rajasingh S, Dixon D, Jain V, Rajasingh J. Stem cells in regenerative dentistry: Current understanding and future directions. J Oral Biosci 2024; 66:288-299. [PMID: 38403241 DOI: 10.1016/j.job.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Regenerative dentistry aims to enhance the structure and function of oral tissues and organs. Modern tissue engineering harnesses cell and gene-based therapies to advance traditional treatment approaches. Studies have demonstrated the potential of mesenchymal stem cells (MSCs) in regenerative dentistry, with some progressing to clinical trials. This review comprehensively examines animal studies that have utilized MSCs for various therapeutic applications. Additionally, it seeks to bridge the gap between related findings and the practical implementation of MSC therapies, offering insights into the challenges and translational aspects involved in transitioning from preclinical research to clinical applications. HIGHLIGHTS To achieve this objective, we have focused on the protocols and achievements related to pulp-dentin, alveolar bone, and periodontal regeneration using dental-derived MSCs in both animal and clinical studies. Various types of MSCs, including dental-derived cells, bone-marrow stem cells, and umbilical cord stem cells, have been employed in root canals, periodontal defects, socket preservation, and sinus lift procedures. Results of such include significant hard tissue reconstruction, functional pulp regeneration, root elongation, periodontal ligament formation, and cementum deposition. However, cell-based treatments for tooth and periodontium regeneration are still in early stages. The increasing demand for stem cell therapies in personalized medicine underscores the need for scientists and responsible organizations to develop standardized treatment protocols that adhere to good manufacturing practices, ensuring high reproducibility, safety, and cost-efficiency. CONCLUSION Cell therapy in regenerative dentistry represents a growing industry with substantial benefits and unique challenges as it strives to establish sustainable, long-term, and effective oral tissue regeneration solutions.
Collapse
Affiliation(s)
- Pooja Shah
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Dixon
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinay Jain
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Nagappan N, Cox S, Anitha K, Karthik RM, Aishwarya K, Gokul S, Moulvi SMM. Knowledge, Awareness, and Perception of Dental Stem Cell: A Questionnaire-based Cross-sectional Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1487-S1489. [PMID: 38882803 PMCID: PMC11174258 DOI: 10.4103/jpbs.jpbs_1078_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 06/18/2024] Open
Abstract
The purest and unrestricted source of stem cells is the enamel of the teeth. Dental stem cells (DSCs), which are simple to get, quick to use, and reasonably priced, have the potential to be used in a variety of promising therapeutic applications. Due to their capacity for self-renewal, they are employed to treat significant flaws brought about by diseases, injuries, or surgical procedures. However, they are constrained by moral and ethical issues, as well as challenges with isolation, culturing, and implantation. DSCs are used in the rebuilding of orofacial structures because they retain the ability to differentiate into neurogenic, adipogenic, and odontogenic components. Before stem cell implantation, scaffolding that has been treated with growth hormones and bone morphogenic proteins is crucial. A self-administered questionnaire was used for a cross-sectional study (n = 200) that collected data on demographics, knowledge of stem cells, and attitude statements. Statistical Package for Social Software version 20.0 was used to analyze the data. This study seeks to learn more about professional groups' perceptions of stem cell research in Tamil Nadu and their knowledge and awareness of DSCs.
Collapse
Affiliation(s)
- Nagappan Nagappan
- Department of Public Health Dentistry, Chettinad Dental College and Research Institute, Kelambakkam, Chengalpet, Tamil Nadu, India
| | - Shireen Cox
- Department of Orthodontics, Chettinad Dental College and Research Institute, Kelambakkam, Chengalpet, Tamil Nadu, India
| | - K Anitha
- Department of Conservative Dentistry and Endodontics, RVS Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - R Murali Karthik
- Department of Prosthodontics and Crown and Bridge, Sri Venkateswara Dental College, Thalambur, Chennai, Tamil Nadu, India
| | - K Aishwarya
- Department of Orthodontics, Adhiparashakthi Dental College and Hospital, Melmaruvathur, Tamil Nadu, India
| | - S Gokul
- Department of Prosthodontics, Karpaga Vinayaga Institute of Dental Sciences, Padalam, Tamil Nadu, India
| | - S M M Moulvi
- Consultant Oral and Maxillofacial Surgeon, The Face OMFS Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Montenegro Raudales JL, Okuwa Y, Honda M. Dental Pulp Cell Transplantation Combined with Regenerative Endodontic Procedures Promotes Dentin Matrix Formation in Mature Mouse Molars. Cells 2024; 13:348. [PMID: 38391961 PMCID: PMC10886544 DOI: 10.3390/cells13040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Regenerative endodontic procedures (REPs) are promising for dental pulp tissue regeneration; however, their application in permanent teeth remains challenging. We assessed the potential combination of an REP and local dental pulp cell (DPC) transplantation in the mature molars of C57BL/6 mice with (REP + DPC group) or without (REP group) transplantation of DPCs from green fluorescent protein (GFP) transgenic mice. After 4 weeks, the regenerated tissue was evaluated by micro-computed tomography and histological analyses to detect odontoblasts, vasculogenesis, and neurogenesis. DPCs were assessed for mesenchymal and pluripotency markers. Four weeks after the REP, the molars showed no signs of periapical lesions, and both the REP and REP + DPC groups exhibited a pulp-like tissue composed of a cellular matrix with vessels surrounded by an eosin-stained acellular matrix that resembled hard tissue. However, the REP + DPC group had a broader cellular matrix and uniquely contained odontoblast-like cells co-expressing GFP. Vasculogenesis and neurogenesis were detected in both groups, with the former being more prominent in the REP + DPC group. Overall, the REP was achieved in mature mouse molars and DPC transplantation improved the outcomes by inducing the formation of odontoblast-like cells and greater vasculogenesis.
Collapse
Affiliation(s)
- Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan; (Y.O.); (M.H.)
| | | | | |
Collapse
|
9
|
Nakashima M, Tanaka H. Pulp Regenerative Therapy Using Autologous Dental Pulp Stem Cells in a Mature Tooth with Apical Periodontitis: A Case Report. J Endod 2024; 50:189-195. [PMID: 37923123 DOI: 10.1016/j.joen.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The utility and feasibility of pulp regenerative therapy with autologous dental pulp stem cells (DPSCs) in mature teeth with irreversible pulpitis were clinically demonstrated. On the other hand, there is no evidence of the utility of DPSCs in mature teeth with apical periodontitis. The aim of this case report was to describe the potential utility of regenerative cell therapy in mature teeth with apical periodontitis. A 44-year-old man was referred for pulp regeneration due to a periapical lesion in his maxillary first premolar. Root canal disinfection was performed by irrigation and intracanal medication by nanobubbles with levofloxacin and amphotericin B in addition to conventional irrigation. Autologous DPSCs isolated from an extracted third molar were transplanted into the root canal after residual bacteria and fungi were below the detection level by polymerase chain reaction assay using universal genes to amplify specific regions within bacterial 16S ribosomal DNA and fungal ribosomal DNA (ITS1), respectively. There were no adverse events or systemic toxicity assessed for clinical evaluations during the 79-week-follow-up period and laboratory evaluations after 4 weeks. The affected tooth was responsive to the electric pulp test. Cone-beam computed tomographic imaging revealed a reduced lesion size, remission of the periapical tissue, and mineralized tissue formation in the apical part of the canal after 79 weeks. The signal intensity on magnetic resonance imaging of the regenerated tissue in the affected tooth was comparable to that of the normal pulp in the adjacent teeth after 24 weeks. This case report demonstrated the potential use of DPSCs for pulp regenerative therapy in mature teeth with apical periodontitis.
Collapse
Affiliation(s)
- Misako Nakashima
- Future Health Medical Corporation, RD Dental Clinic, Kobe, Hyogo, Japan.
| | - Hiroyuki Tanaka
- Future Health Medical Corporation, RD Dental Clinic, Kobe, Hyogo, Japan
| |
Collapse
|
10
|
Mantesso A, Nör JE. Stem cells in clinical dentistry. J Am Dent Assoc 2023; 154:1048-1057. [PMID: 37804275 PMCID: PMC11827052 DOI: 10.1016/j.adaj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Stem cells are present in most of the tissues in the craniofacial complex and play a major role in tissue homeostasis and repair. These cells are characterized by their capacity to differentiate into multiple cell types and to self-renew to maintain a stem cell pool throughout the life of the tissue. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing the identification and characterization of stem cells of the oral cavity. RESULTS Every oral tissue except enamel, dentin, and cementum contains stem cells for the entire life span. These stem cells self-renew to maintain a pool of cells that can be activated to replace terminally differentiated cells (for example, odontoblasts) or to enable wound healing (for example, dentin bridge in pulp exposures and healing of periodontal tissues after surgery). In addition, dental stem cells can differentiate into functional blood vessels and nerves. Initial clinical trials have shown that transplanting dental pulp stem cells into disinfected necrotic teeth has allowed for the recovery of tooth vitality and vertical and horizontal root growth in immature teeth with incomplete root formation. PRACTICAL IMPLICATIONS As a consequence of these groundbreaking discoveries, stem cell banks are now offering services for the cryopreservation of dental stem cells. The future use of stem cell-based therapies in the clinic will depend on the collaboration of clinicians and researchers in projects designed to understand whether these treatments are safe, efficacious, and clinically feasible.
Collapse
Affiliation(s)
- Andrea Mantesso
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan School of Medicine
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
11
|
Astudillo-Ortiz E, Babo PS, Sunde PT, Galler KM, Gomez-Florit M, Gomes ME. Endodontic Tissue Regeneration: A Review for Tissue Engineers and Dentists. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:491-513. [PMID: 37051704 DOI: 10.1089/ten.teb.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others. This fact triggered some misinterpretations, mainly when the denominations of different approaches were used as synonyms. The evaluation of results is not precise, leading to biased conjectures. Therefore, this literature review aims to conceptualize the commonly used terminology, summarize the main research areas on pulp regeneration, identify future trends, and ultimately clarify whether we are really on the edge of a paradigm shift in contemporary endodontics toward pulp regeneration.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Endodontics, School of Dentistry, University of Cuenca, Cuenca, Ecuador
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Pia T Sunde
- Department of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
12
|
Kojima Y, Yamaguchi A, Inoue H. Super Minimally Invasive Pulp Therapy for Severe Pulpitis: A Report of Two Cases. Cureus 2023; 15:e42505. [PMID: 37637564 PMCID: PMC10457134 DOI: 10.7759/cureus.42505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
In regions where preventive dentistry is widespread, tooth loss due to root fracture occurs approximately 10 times more frequently than that due to caries and periodontal disease. Root fracture is most likely to occur in non-vital teeth, where the dental pulp has been removed, often through a procedure known as pulpectomy. However, super minimally invasive pulp (SMIP) therapy has recently been reported as a novel treatment approach for pulpitis of any degree. In this study, SMIP therapy was performed to preserve the vitality of teeth in two patients with severe pulpitis. Case one involved a 35-year-old man with a history of hypertension who presented with intense spontaneous pain in tooth #34. The pain was particularly severe while sleeping at night and on exposure to cold water or heat, but it was absent on percussion. Following the detection of cervical caries and severe pulp exposure, SMIP therapy was administered, and the tooth was subsequently restored using glass ionomer cement. Case two involved an 18-year-old woman with no significant medical history who had deep caries in tooth #46. She experienced mild tooth pain when exposed to cold water, and examination revealed pulp exposure. We applied mineral trioxide aggregate over the dental pulp and restored the tooth using composite resin. The vitality of both teeth was maintained at the three-month follow-up. To our knowledge, this is the first report of SMIP therapy for teeth with severe pulpitis. SMIP therapy is an innovative treatment that may cause a paradigm shift from conventional dental treatment.
Collapse
Affiliation(s)
- Yuki Kojima
- Anesthesiology, Asahi General Hospital, Asahi, JPN
| | - Atsuki Yamaguchi
- Dental Anesthesiology, Kanagawa Dental University, Yokosuka, JPN
| | - Hiroyuki Inoue
- Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, National Research and Development Agency, Tokyo, JPN
| |
Collapse
|
13
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Azaryan E, Mortazavi-Derazkola S, Alemzadeh E, Emadian Razavi F, Yousefi M, Hanafi-Bojd MY, Naseri M. Effects of hydroxyapatite nanorods prepared through Elaeagnus Angustifolia extract on modulating immunomodulatory/dentin-pulp regeneration genes in DPSCs. Odontology 2023; 111:461-473. [PMID: 36350427 DOI: 10.1007/s10266-022-00761-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Dental pulp stem cells (DPSCs) are a new type of mesenchymal stem cells (MSCs) found in the oral cavity with immunomodulation and tissue regeneration capacities. This study determined the impacts of nano-hydroxyapatite (nHA) prepared through Elaeagnus Angustifolia extract (EAE) to enhance the relative expression of immunomodulatory/dentin-pulp regeneration genes in DPSCs. To produce nHA and modified nHA via EAE (nHAEA), the sol-gel technique was used. The functional groups of nanoparticles (NPs), morphological, and optical features were determined using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) together with energy-dispersive X-ray analysis (EDAX), and Transmission electron microscopy (TEM). The cell viability was then determined using the MTT method in the presence of various EAE, nHA, and nHAEA concentrations. Target gene expression was quantified using a real-time PCR procedure after treating DPSCs with an optimally non-toxic dose of EAE and NPs. The presence of the HA phase was reported with the XRD and FTIR results. According to the results of SEM and TEM, the rod-like NPs could be fabricated. nHAEAs were found to be characterized with low crystallite size, reduced diameter, lengthier, needle-like, and less agglomerated particles compared with nHA. The real-time PCR results demonstrated that nHAEA remarkably increased the expression of human leukocyte antigen-G5 (HLA-G5), vascular endothelial growth factor (VEGF), dentin sialophosphoprotein (DSPP), and interleukin6 (IL6) genes compared to the nHA group. These findings suggest that nHAEAs might have the potential application in the stemness capability of DPSCs for the treatment of inflamed/damaged pulp.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Yousefi
- Department of Microbiology, Faculty of Medicine, Birjand University of Medical Science, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
16
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
17
|
Rahman FA, Lin CS, Qing CY, Ying CC, Vien CY, Wei CT. Knowledge, Awareness and Perception of Dental Stem Cell and Their Applications in Regenerative Medicine Among Professional Groups. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Dental stem cell research has become an important field in regenerative medicine. Nevertheless, the depth of knowledge and awareness of dental stem cells remain vague among the professional groups in Malaysia. The objective of this study is to assess the level of knowledge and awareness of professional groups in Malaysia on dental stem cells and their applications in regenerative medicine.
Methods:
A descriptive cross-sectional survey was implemented using online and hard-copy questionnaires that was distributed among medical doctors, scientists, and dentists to assess the level of knowledge and awareness (n=157). The questionnaire consists of 3 sections consisting of demographics, knowledge assessment and perception among the professional groups. The data were analysed using SPSS analysis.
Results:
Results showed that professional groups in Malaysia were knowledgeable and aware of dental stem cells and their application. Majority of the respondents were dentists (41.91%), followed by medical doctors (35.29%) and scientists (22.79%). 50.74% of respondents were unsure about the similar characteristics between dental stem cells (DSCs) and bone marrow mesenchymal stem cells (BMMSCs). Most respondents were aware of the derivation of DSCs from pulp and periodontal ligament (PDL) tissues (77.21%) and that DSCs are considered an adult stem cell source (51.11%). Most respondents were familiar with the characteristics of DSCs. They were aware that DSCs have the unique ability to self-renew and differentiate into trilineage differentiation (69.12%). They agreed that DSCs are an excellent cell resource for therapeutic approaches to neural repair and regeneration (63.24%). 63.24% of the respondents demonstrated a positive outcome for dental stem cell research. 59.56% of them would be willing to donate their extracted teeth for research. About 56.62% of respondents would conserve their teeth in stem cell banks and 52.94% are interested in investing in the stem cell industry.
Conclusion:
A high level of perception and awareness about dental stem cells and its application was noted among professional groups in Malaysia. They are supportive and willing to invest for dental stem cell research.
Collapse
|
18
|
Zou J, Mao J, Shi X. Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:350-361. [PMID: 36207838 PMCID: PMC9511472 DOI: 10.3724/zdxbyxb-2022-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Regenerative endodontic therapy (RET) utilizing tissue engineering approach can promote the regeneration of pulp-dentin complex to restore pulp vascularization, neuralization, immune function and tubular dentin, therefore the regenerated pulp-dentin complex will have normal function. Multiple factors may significantly affect the efficacy of RET, including stem cells, biosignaling molecules and biomaterial scaffolds. Stem cells derived from dental tissues (such as dental pulp stem cells) exhibit certain advantages in RET. Combined application of multiple signaling molecules and activation of signal transduction pathways such as Wnt/β-catenin and BMP/Smad play pivotal roles in enhancing the potential of stem cell migration, proliferation, odontoblastic differentiation, and nerve and blood vessel regeneration. Biomaterials suitable for RET include naturally-derived materials and artificially synthetic materials. Artificially synthetic materials should imitate natural tissues for biomimetic modification in order to realize the temporal and spatial regulation of pulp-dentin complex regeneration. The realization of pulp-dentin complex regeneration depends on two strategies: stem cell transplantation and stem cell homing. Stem cell homing strategy does not require the isolation and culture of stem cells in vitro, so is better for clinical application. However, in order to achieve the true regeneration of pulp-dentin complex, problems related to improving the success rate of stem cell homing and promoting their proliferation and differentiation need to be solved. This article reviews the influencing factors of pulp-dentin complex regeneration and related biological strategies, and discusses the future research direction of RET, to provide reference for clinical translation and application of RET.
Collapse
Affiliation(s)
- Jielin Zou
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
19
|
Fu Z, Zhuang Y, Cui J, Sheng R, Tomás H, Rodrigues J, Zhao B, Wang X, Lin K. Development and challenges of cells- and materials-based tooth regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Abstract
There have been published regenerative endodontic protocols for treating immature teeth in young patients, but there are no clinical considerations for the adult teeth. The goal of the present review is to propose a specific clinical protocol for both mature and immature adult teeth with necrotic pulps. Research was performed from January to April of 2021. From the 539 studies identified through the initial search, 23 studies were qualified for the final analysis (3 randomized controlled trials and 20 case reports). The results in mature adult teeth indicate a success rate of 96.35 and 100% in bone healing through the randomized controlled trials and case reports, respectively; 100% in absence of clinical symptoms, and 58 and 62.5% in positive response to sensibility tests. The success rate in the case reports in teeth with open apex reported a 61.5% of root development, 100% of bone healing, 96.15% of absence of clinical symptoms, and 43.7% of positive response to sensibility tests. The current evidence is scarce but emerging, so REPs may be a promising alternative for treating adult necrotic teeth. The clinical protocol proposed is based on the evidence available and age considerations, and should be updated in the future.
Collapse
|
21
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
22
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
23
|
Saharkhiz M, Ayadilord M, Emadian Razavi F, Naseri M. Effects of phytosomal curcumin treatment on modulation of immunomodulatory and pulp regeneration genes in dental pulp mesenchymal stem cells. Odontology 2021; 110:287-295. [PMID: 34586536 DOI: 10.1007/s10266-021-00659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Dental pulp stem cells (DPSCs) are a new population of mesenchymal stem cells (MSCs) located in the oral cavity with potential capacities for tissue regeneration and immunomodulation. The purpose from this study was to determine effects of curcumin nanoparticle into phytosomal formulation (PC) on the relative expression of DSPP, VEGF-A, HLA-G5, VCAM1, RelA and STAT3 genes which are among the most important factors influencing processes of immunomodulatory and tissue regenerative by DPSCs. After isolation and culture of DPSCs, these cells were characterized according to predetermined criteria including flow cytometric analysis for detection of the most important cell surface markers and also evaluation of multilineage differentiation potential. Then, the MTT method was employed to check the cell viability in treatment with different concentrations of PC. Following DPSCs' treatment with an optimal-non-toxic dose of this nanoparticle, quantification of expression of target genes was performed using real-time PCR procedure. According to results of immunophenotyping analysis and cell differentiation experiments, the isolated cells were confirmed as MSCs as more than 99% of them expressed specific mesenchymal markers while only about 0.5% of them were positive for hematopoietic marker. The real-time PCR results indicated that PC significantly reduced the expression of RelA, STAT3, VCAM1 and HLA-G5 genes up to many times over while optimally enhanced the expression of DSPP and VEGF-A genes, although this enhance was statistically significant only for VEGF-A (all P < 0.001). The study suggests that PC affects the stemness capabilities of DPSCs and it may facilitate the development of MSCs-based therapeutics in regenerative dentistry.
Collapse
Affiliation(s)
- Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Department of Prosthodontics, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran. .,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
24
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
25
|
Wi H, Lee S, Kim Y, No JG, Lee P, Lee BR, Oh KB, Hur TY, Ock SA. Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro. J Vet Sci 2021; 22:e63. [PMID: 34423601 PMCID: PMC8460457 DOI: 10.4142/jvs.2021.22.e63] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/06/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022] Open
Abstract
Background Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.
Collapse
Affiliation(s)
- Hayeon Wi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin-Gu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| |
Collapse
|
26
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
27
|
Saharkhiz M, Razavi FE, Riahi SM, Ayadilord M, Rostami Z, Naseri M. An In Vitro Study of the Effects of Crocin on the Modulation of DSPP, VEGF-A, HLA-G5, STAT3 and CD200 Expression in Human Dental Pulp Stem Cells. Cell Reprogram 2021; 23:239-249. [PMID: 34348036 DOI: 10.1089/cell.2021.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have been recommended as promising candidate for cell-based therapeutic applications due to high potentials in tissue repair/regeneration and modulation of immune responses. The gene expression change strategy by natural plant enhancers is an available opportunity to improve the stemness properties of these cells. The objective of this research was the evaluation of Crocin effects (saffron plant's bioactive compound) on immunoregulation and tissue regeneration-related biomarkers expression in human DPSCs. Based on the results of cell viability assay, application of 400 μM and lower concentrations of Crocin had no toxic effects on DPSCs; however, the time-dependent cytotoxic effects were observed at higher concentrations. This study, probably for the first time, detected the surface expression of CD200 in DPSCs with a slight time-dependent upward trend and reported that treatment with Crocin could increase expression of this macromolecule up to many times over. Also, it revealed that this carotenoid significantly led to the time-dependent upregulation of dentin sialophosphoprotein, vascular endothelial growth factor A, human leukocyte antigen-G5, and signal transducer and activator of transcription-3 messenger ribonucleic acids (mRNAs); however, this significant upregulation for STAT3 occurred, followed by a remarkable reduction. The results of this study indicated that cell treatment with Crocin may be effective in improving the stemness capacities of DPSCs. Therefore, the study provided basis for more insights into the biological effects of Crocin on DPSCs that it may aid in the future improvement of mesenchymal stem cell-based therapies.
Collapse
Affiliation(s)
- Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Department of Prosthodontics, Dental Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Mohammad Riahi
- Department of Epidemiology and Biostatistics, Cardiovascular Diseases Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
28
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
29
|
Fibrin Glue Implants Seeded with Dental Pulp and Periodontal Ligament Stem Cells for the Repair of Periodontal Bone Defects: A Preclinical Study. Bioengineering (Basel) 2021; 8:bioengineering8060075. [PMID: 34206126 PMCID: PMC8226811 DOI: 10.3390/bioengineering8060075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
A technology to create a cell-seeded fibrin-based implant matching the size and shape of bone defect is required to create an anatomical implant. The aim of the study was to develop a technology of cell-seeded fibrin gel implant creation that has the same shape and size as the bone defect at the site of implantation. Using computed tomography (CT) images, molds representing bone defects were created by 3D printing. The form was filled with fibrin glue and human dental pulp stem cells (DPSC). The viability, set of surface markers and osteogenic differentiation of DPSC grown in fibrin gel along with the clot retraction time were evaluated. In mice, an alveolar bone defect was created. The defect was filled with fibrin gel seeded with mouse DPSC. After 28 days, the bone repair was analyzed with cone beam CT and by histological examination. The proliferation rate, set of surface antigens and osteogenic potential of cells grown inside the scaffold and in 2D conditions did not differ. In mice, both cell-free and mouse DPSC-seeded implants increased the bone tissue volume and vascularization. In mice with cell-seeded gel implants, the bone remodeling process was more prominent than in animals with a cell-free implant. The technology of 3D-printed forms for molding implants can be used to prepare implants using components that are not suitable for 3D printing.
Collapse
|
30
|
Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther 2021; 12:302. [PMID: 34051821 PMCID: PMC8164249 DOI: 10.1186/s13287-021-02240-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. We have demonstrated the safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. The device for isolation of MDPSCs, however, is not cost-effective and requires a prolonged cell culture period. It is well known that MSCs cultured under hypoxic-preconditions improved MSC proliferation activity and stemness. Therefore, in this investigation, we attempted to improve the clinical utility of DPSCs by hypoxia-preconditioned DPSCs (hpDPSCs) compared with MDPSCs to improve the potential clinical utility for pulp regeneration in endodontic dentistry. Methods Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity, and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ was investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of the blood and urine tests. Results hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration, and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly upregulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation. Conclusions These results demonstrated that the efficacy of hpDPSCs for pulp regeneration was identical, although hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02240-w.
Collapse
Affiliation(s)
- Mohammed Zayed
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.,Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Mami Ishikawa
- Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan
| | - Michiyo Tominaga
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Misako Nakashima
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan. .,Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
31
|
Kim SG. A Cell-Based Approach to Dental Pulp Regeneration Using Mesenchymal Stem Cells: A Scoping Review. Int J Mol Sci 2021; 22:4357. [PMID: 33921924 PMCID: PMC8122243 DOI: 10.3390/ijms22094357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the recent explosion of investigations on dental pulp regeneration using various tissue engineering strategies, the translation of the findings from such studies into therapeutic applications has not been properly achieved. The purpose of this scoping review was to systematically review the efficacy of mesenchymal stem cell transplantation for dental pulp regeneration. A literature search was conducted using five electronic databases from their inception to January 2021 and supplemented by hand searches. A total of 17 studies, including two clinical trials and 15 animal studies using orthotopic pulp regeneration models, were included for the review. The risk of bias for the individual studies was assessed. This scoping review demonstrated that the regeneration of vascularized pulp-like tissue was achieved using the stem cell transplantation strategy in animal models. Autologous cell transplantation in two clinical studies also successfully regenerated vascularized vital tissue. Dental pulp stem cell subpopulations, such as mobilized dental pulp stem cells, injectable scaffolds such as atelocollagen, and a granulocyte-colony forming factor, were the most commonly used for pulp regeneration. The overall risk of bias was unclear for animal studies and was moderate or judged to raise some concerns for clinical studies. More high-quality clinical studies are needed to further determine the safety and efficacy of the stem cell transplantation strategy for dental pulp regeneration.
Collapse
Affiliation(s)
- Sahng G Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY 10032, USA
| |
Collapse
|
32
|
Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6684667. [PMID: 33575339 PMCID: PMC7857869 DOI: 10.1155/2021/6684667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023]
Abstract
Background The regeneration of dental pulp, especially in cases of pulp death of immature teeth, is the goal of the regenerative endodontic procedures (REPs) that are based on tissue engineering principles, consisting of stem cells, growth factors, and scaffolds. Photobiomodulation therapy (PBMT) showed to improve dental pulp regeneration through cell homing approaches in preclinical studies and has been proposed as the fourth element of tissue engineering. However, when a blood clot was used as a scaffold in one of these previous studies, only 30% of success was achieved. The authors pointed out the instability of the blood clot as the regeneration shortcoming. Then, to circumvent this problem, a new scaffold was developed to be applied with the blood clot. The hypothesis of the present study was that an experimental injectable chitosan hydrogel would facilitate the three-dimensional spatial organization of endogenous stem cells in dental pulp regeneration with no interference on the positive influence of PBMT. Methods For the in vitro analysis, stem cells from the apical papilla (SCAPs) were characterized by flow cytometry and applied in the chitosan scaffold for evaluating adhesion, migration, and proliferation. For the in vivo analysis, the chitosan scaffold was applied in a rodent orthotopic dental pulp regeneration model under the influence of PBMT (660 nm; power output of 20 mW, beam area of 0.028 cm2, and energy density of 5 J/cm2). Results The scaffold tested in this study allowed significantly higher viability, proliferation, and migration of SCAPs in vitro when PBMT was applied, especially with the energy density of 5 J/cm2. These results were in consonance to those of the in vivo data, where pulp-like tissue formation was observed inside the root canal. Conclusion Chitosan hydrogel when applied with a blood clot and PBMT could in the future improve previous results of dental pulp regeneration through cell homing approaches.
Collapse
|
33
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev Rep 2021; 17:1251-1263. [PMID: 33459973 DOI: 10.1007/s12015-020-10117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Deep caries, trauma, and severe periodontitis result in pulpitis, pulp necrosis, and eventually pulp loss. However, no clinical therapy can regenerate lost pulp. A novel pulp regeneration strategy for clinical application is urgently needed. Signaling transduction plays an essential role in regulating the regenerative potentials of dental stem cells. Cytokines or growth factors, such as stromal cell-derived factor (SDF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF), WNT, can promote the migration, proliferation, odontogenic differentiation, pro-angiogenesis, and pro-neurogenesis potentials of dental stem cells respectively. Using the methods of signaling modulation including growth factors delivery, genetic modification, and physical stimulation has been applied in multiple preclinical studies of pulp regeneration based on cell transplantation or cell homing. Transplanting dental stem cells and growth factors encapsulated into scaffold regenerated vascularized pulp-like tissue in the root canal. Also, injecting a flowable scaffold only with chemokines recruited endogenous stem/progenitor cells for pulp regeneration. Notably, dental pulp regeneration has gradually developed into the clinical phase. These findings enlightened us on a novel strategy for structural and functional pulp regeneration through elaborate modulation of signaling transduction spatially and temporally via clinically applicable growth factors delivery. But challenges, such as the adverse effects of unphysiological signaling activation, the controlled drug release system, and the safety of gene modulation, are necessary to be tested in future works for promoting the clinical translation of pulp regeneration.
Collapse
|
35
|
Nakashima M, Iohara K, Zayed M. Pulp Regeneration: Current Approaches, Challenges, and Novel Rejuvenating Strategies for an Aging Population. J Endod 2020; 46:S135-S142. [PMID: 32950185 DOI: 10.1016/j.joen.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We showed the safety and efficacy of pulp regenerative therapy by the autologous transplantation of mobilized dental pulp stem cells with granulocyte colony-stimulating factor in a pilot clinical study of young and middle-aged pulpectomized teeth. An experimental study in dogs further demonstrated an age-dependent decline in the amount of regenerated pulp tissue. In our society, in which people will soon live beyond 100 years, this therapy should be efficacious for contributing to the functional survival and endurance of the tooth not only for pulpectomized young teeth but also for aged teeth with periapical disease. However, there are 2 challenges: 1 is enhancing pulp regeneration in aged teeth, and another is complete disinfection before cell transplantation. Thus, this review presents trypsin pretreatment for the former and a novel irrigant, nanobubbles with antibacterial nanopolymers, for the latter, thus demonstrating potential utility for pulp regenerative therapy in aged teeth with periapical disease.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan; Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan; Air Water Group, Aeras Bio Inc, Kobe, Hyogo, Japan.
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| | - Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan; Department of Animal Surgery, School of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
36
|
Jang JH, Moon JH, Kim SG, Kim SY. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep 2020; 10:12536. [PMID: 32719323 PMCID: PMC7385085 DOI: 10.1038/s41598-020-69437-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Control of blood clotting in root canal systems is one of the most critical and difficult concerns for regenerative endodontics therapy (RET). The purpose of this study was to investigate the effects of using gelatin- and fibrin-based hemostatic hydrogels as a scaffold on pulp regeneration in a minipig model. Cell viability of human dental pulp stem cells cultured three-dimensionally in gelatin-based and fibrin-based scaffolds was evaluated by MTT and live/dead assay. RET was performed on 24 immature premolars with an autologous blood clot (PC), gelatin-based and fibrin-based hemostatic matrices (GM and FM), or without the insertion of a scaffold (NC). The follow-up period was 12 weeks. Radiographic and histologic assessments for pulp regeneration were performed. Gelatin-based scaffolds exhibited significantly higher cell viability than fibrin-based scaffolds after 15 days (P < 0.05). The PC and GM groups showed favorable root development without inflammation and newly mineralized tissue deposited in the root canal system, while FM group presented inflammatory changes with the continuation of root development. The NC group exhibited internal root resorption with periapical lesions. The application of GM in RET led to favorable clinical outcomes of root development without inflammatory changes compared to conventional RET. Our results suggest that GM may serve as a viable regenerative scaffold for pulp regeneration.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Joung-Ho Moon
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Sahng Gyoon Kim
- Division of Endodontics, College of Dental Medicine, Columbia University, New York, NY, USA.
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
37
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
39
|
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9:445-464. [PMID: 31943813 PMCID: PMC7103623 DOI: 10.1002/sctm.19-0398] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|
40
|
Brizuela C, Meza G, Urrejola D, Quezada MA, Concha G, Ramírez V, Angelopoulos I, Cadiz MI, Tapia-Limonchi R, Khoury M. Cell-Based Regenerative Endodontics for Treatment of Periapical Lesions: A Randomized, Controlled Phase I/II Clinical Trial. J Dent Res 2020; 99:523-529. [PMID: 32202965 DOI: 10.1177/0022034520913242] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A randomized controlled phase I/II clinical trial was designed to evaluate the safety and efficacy of encapsulated human umbilical cord mesenchymal stem cells in a plasma-derived biomaterial for regenerative endodontic procedures (REPs) in mature permanent teeth with apical lesions. The trial included 36 patients with mature incisors, canines, or mandibular premolars showing pulp necrosis and apical periodontitis. Patients were randomly and equally allocated between experimental (REP) or conventional root canal treatment (ENDO) groups. On the first visit, cavity access and mechanical preparation of the root canal were performed. Calcium hydroxide medication was used, and the cavity was sealed. Three weeks later, patients were treated following their assigned protocol of ENDO or REP. Clinical follow-up examinations were performed at 6 and 12 mo. Categorical variables were evaluated by Fisher's exact test. Quantitative variables were compared using the Mann-Whitney test. The evolution over time of the percentage of perfusion units and the dimensions of lesion and cortical compromise were explored. After the 12-mo follow-up, no adverse events were reported, and the patients showed 100% clinical efficacy in both groups. Interestingly, in the REP group, the perfusion unit percentage measured by laser Doppler flowmetry revealed an increase from 60.6% to 78.1% between baseline and 12-mo follow-up. Sensitivity tests revealed an increase of the positive pulp response in the REP group at 12-mo follow-up (from 6% to 56% on the cold test, from 0% to 28% on the hot test, and from 17% to 50% on the electrical test). We present the first clinical safety and efficacy evidence of the endodontic use of allogenic umbilical cord mesenchymal stem cells encapsulated in a plasma-derived biomaterial. The innovative approach, based on biological principles that promote dentin-pulp regeneration, presents a promising alternative for the treatment of periapical pathology (ClinicalTrials.gov NCT03102879).
Collapse
Affiliation(s)
- C Brizuela
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - G Meza
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - D Urrejola
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - M A Quezada
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - G Concha
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - V Ramírez
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - I Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - M I Cadiz
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - R Tapia-Limonchi
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - M Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Cells for Cells, Santiago, Chile
| |
Collapse
|
41
|
Tawfik Tadros MS, El-Baz MAES, Khairy MAEK. Dental stem cells in tooth repair: A systematic review. F1000Res 2019; 8:1955. [DOI: 10.12688/f1000research.21058.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Dental stem cells (DSCs) are self-renewable teeth cells, which help maintain or develop oral tissues. These cells can differentiate into odontoblasts, adipocytes, cementoblast-like cells, osteoblasts, or chondroblasts and form dentin/pulp. This systematic review aimed to summarize the current evidence regarding the role of these cells in dental pulp regeneration. Methods: We searched the following databases: PubMed, Cochrane Library, MEDLINE, SCOPUS, ScienceDirect, and Web of Science using relevant keywords. Case reports and non-English studies were excluded. We included all studies using dental stem cells in tooth repair whether in vivo or in vitro studies. Results: Dental pulp stem cell (DPSCs) is the most common type of cell. Most stem cells are incorporated and implanted into the root canals in different scaffold forms. Some experiments combine growth factors such as TDM, BMP, and G-CSF with stem cells to improve the results. The transplant of DPSCs and stem cells from apical papilla (SCAPs) was found to be associated with pulp-like recovery, efficient revascularization, enhanced chondrogenesis, and direct vascular supply of regenerated tissue. Conclusion: The current evidence suggests that DPSCs, stem cells from human exfoliated deciduous teeth, and SCAPs are capable of providing sufficient pulp regeneration and vascularization. For the development of the dental repair field, it is important to screen for more effective stem cells, dentine releasing therapies, good biomimicry scaffolds, and good histological markers.
Collapse
|
42
|
Nakashima M, Iohara K, Bottino MC, Fouad AF, Nör JE, Huang GTJ. Animal Models for Stem Cell-Based Pulp Regeneration: Foundation for Human Clinical Applications. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:100-113. [PMID: 30284967 PMCID: PMC6486672 DOI: 10.1089/ten.teb.2018.0194] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
IMPACT STATEMENT Animal models are essential for tissue regeneration studies. This review summarizes and discusses the small and large animal models, including mouse, ferret, dog, and miniswine that have been utilized to experiment and to demonstrate stem cell-mediated dental pulp tissue regeneration. We describe the models based on the location where the tissue regeneration is tested-either ectopic, semiorthotopic, or orthotopic. Developing and utilizing optimal animal models for both mechanistic and translational studies of pulp regeneration are of critical importance to advance this field.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan
| | - Ashraf F. Fouad
- Department of Endodontics, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan
| | - George T.-J. Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
43
|
Proksch S, Galler KM. Scaffold Materials and Dental Stem Cells in Dental Tissue Regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40496-018-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|