1
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
2
|
Ding W, He C, Liu X, Hou C, Wang Q, Gong T, Yang J, Shen J, Shan Z, Sun R. Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells. Biochem Biophys Res Commun 2024; 747:151260. [PMID: 39798536 DOI: 10.1016/j.bbrc.2024.151260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/25/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Neurodevelopmental abnormalities are significant contributors to a variety of neurological disorders. Ubiquitination is essential for embryonic development and plays a pivotal role in neurodevelopment. Although Cnot4 possesses E3-ubiquitin ligase activity, its function in neurodevelopment and embryonic stem cells (ESCs) remains inadequately understood. This study examined the impact of Cnot4 ubiquitination-deficit in mouse ESCs using flow cytometry, CCK-8 assays, immunofluorescence, western blotting, RNA sequencing (RNA-seq), and intracellular Ca2+ measurement. Findings demonstrated that the lack of ubiquitination in Cnot4 reduced ESC proliferation rates and facilitated ectodermal differentiation during spontaneous ESC differentiation. RNA-seq analysis identified that the differentially expressed genes were primarily linked to glucose metabolism and Ca2+ signaling pathways. Additionally, results indicated that the ubiquitination-deficit in Cnot4 caused increased intracellular Ca2+ levels in mESCs. These findings suggest that Cnot4 plays a critical role in the regulation of proliferation and differentiation of mESCs through ubiquitination, providing a basis for further exploration of its involvement in embryonic and neural development.
Collapse
Affiliation(s)
- Wenxin Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Chenyao He
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Hou
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Tiantian Gong
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jiahao Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Zhiyan Shan
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| | - Ruizhen Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
4
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Vladimir A Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
5
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
6
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
7
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
8
|
THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat Cell Biol 2022; 24:1049-1063. [PMID: 35798842 DOI: 10.1038/s41556-022-00944-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-β1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.
Collapse
|
9
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
10
|
Conde I, Ribeiro AS, Paredes J. Breast Cancer Stem Cell Membrane Biomarkers: Therapy Targeting and Clinical Implications. Cells 2022; 11:934. [PMID: 35326385 PMCID: PMC8946706 DOI: 10.3390/cells11060934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy affecting women worldwide. Importantly, there have been significant improvements in prevention, early diagnosis, and treatment options, which resulted in a significant decrease in breast cancer mortality rates. Nevertheless, the high rates of incidence combined with therapy resistance result in cancer relapse and metastasis, which still contributes to unacceptably high mortality of breast cancer patients. In this context, a small subpopulation of highly tumourigenic cancer cells within the tumour bulk, commonly designated as breast cancer stem cells (BCSCs), have been suggested as key elements in therapy resistance, which are responsible for breast cancer relapses and distant metastasis. Thus, improvements in BCSC-targeting therapies are crucial to tackling the metastatic progression and might allow therapy resistance to be overcome. However, the design of effective and specific BCSC-targeting therapies has been challenging since there is a lack of specific biomarkers for BCSCs, and the most common clinical approaches are designed for commonly altered BCSCs signalling pathways. Therefore, the search for a new class of BCSC biomarkers, such as the expression of membrane proteins with cancer stem cell potential, is an area of clinical relevance, once membrane proteins are accessible on the cell surface and easily recognized by specific antibodies. Here, we discuss the significance of BCSC membrane biomarkers as potential prognostic and therapeutic targets, reviewing the CSC-targeting therapies under clinical trials for breast cancer.
Collapse
Affiliation(s)
- Inês Conde
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
11
|
Du J, Liu X, Yarema KJ, Jia X. Glycoengineering human neural stem cells (hNSCs) for adhesion improvement using a novel thiol-modified N-acetylmannosamine (ManNAc) analog. BIOMATERIALS ADVANCES 2022; 134:112675. [PMID: 35599100 PMCID: PMC9300770 DOI: 10.1016/j.msec.2022.112675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
This study sets the stage for the therapeutic use of Ac5ManNTProp, an N-acetylmannosamine (ManNAc) analog that installs thiol-modified sialoglycans onto the surfaces of human neural stem cells (hNSC). First, we compared hNSC adhesion to the extracellular matrix (ECM) proteins laminin, fibronectin, and collagen and found preferential adhesion and concomitant changes to cell morphology and cell spreading for Ac5ManNTProp-treated cells to laminin, compared to fibronectin where there was a modest response, and collagen where there was no observable increase. PCR array transcript analysis identified several classes of cell adhesion molecules that responded to combined Ac5ManNTProp treatment and hNSC adhesion to laminin. Of these, we focused on integrin α6β1 expression, which was most strongly upregulated in analog-treated cells incubated on laminin. We also characterized downstream responses including vinculin display as well as the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). In these experiments, Ac5ManNTProp more strongly induced all tested biological endpoints compared to Ac5ManNTGc, showing that the single methylene unit that structurally separates the two analogs finely tunes biological responses. Together, the concerted modulation of multiple pro-regenerative activities through Ac5ManNTProp treatment, in concert with crosstalk with ECM components, lays a foundation for using our metabolic glycoengineering approach to treat neurological disorders by favorably modulating endpoints that contribute to the viability of transplanted NSCs.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205,Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
An JS, Moon JH, Kim C, No JK, Eun YG, Chang Lim Y. Integrin alpha 6 as a stemness driver is a novel promising target for HPV (+) head and neck squamous cell carcinoma. Exp Cell Res 2021; 407:112815. [PMID: 34496296 DOI: 10.1016/j.yexcr.2021.112815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
Although the incidence rates of head and neck squamous cell carcinoma (HNSCC) associated with human papilloma virus (HPV) infection have recently been on the rise, the underlying mechanism of its tumorigenesis remains largely unknown. Here, we investigated whether HNSCC cells with high expression of integrin alpha 6 (ITGα6), one of the HPV receptors, have a preference during HPV infection. In addition, we examined the gain or loss of function of the ITGα6 gene in HPV + ve HNSCC cells, as well as its prognostic value in patients with HNSCC. HPV pseudovirus was found to be more infective, with HNSCC cells featuring an overexpressed ITGα6 gene compared to the control cells. Overexpression and suppression of ITGα6 respectively increases and decreases stemness phenotypes of HPV + ve HNSCC cells. Furthermore, ITGα6 can regulate stemness by partially mediating AKT pathway in HPV + ve HNSCC cells. Finally, patients with HPV + ve HNSCC had a poor prognosis in cases of elevated ITGα6 expression; however, the expression levels of ITGα6 did not influence the survival rates of HPV-negative HNSCC patients. In conclusion, ITGα6 can serve as a potential therapeutic target for HPV + ve HNSCC cancer-like stem cells (CSCs).
Collapse
Affiliation(s)
- Jin Seol An
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Chayeon Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Joo Kyung No
- Department of Otorhinolaryngology - Head and Neck Surgery, Kyunghee University School of Medicine, Seoul, South Korea
| | - Young Gyu Eun
- Department of Otorhinolaryngology - Head and Neck Surgery, Kyunghee University School of Medicine, Seoul, South Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Sharifi M, Zarrin B, Bahri Najafi M, Hakimian MR, Hosseini N, Talebi K, Javanmard SH. Integrin α6 β4 on Circulating Tumor Cells of Metastatic Breast Cancer Patients. Adv Biomed Res 2021; 10:16. [PMID: 34476224 PMCID: PMC8378442 DOI: 10.4103/abr.abr_76_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The detection of circulating tumor cells (CTCs) is prognostic during the disease in women with metastatic breast cancer. Integrins are key role players in nearly every step of cancer progression. In this study, we aimed to analyze integrin alpha6beta4 expression on CTCs isolated from blood samples of patients with advanced breast cancer. Materials and Methods: In this single-center study, peripheral blood samples from 23 breast cancer patients were obtained and analyzed for the presence of CTCs by EasySep™ Direct Human CTC Enrichment Kit combined with subsequent immunocytochemical staining of anti-cytokeratin and anti-epithelial cell adhesion molecules, and β4 integrin on CTCs. Data were correlated with clinicopathological parameters. Results: CTCs were detected in 100% of the patients. The ratio of integrin β4+ CTC was 61% ± 8% of total CTCs. No significant correlation between histopathological parameters and CTC detection was found. Conclusion: Our results demonstrated the importance of α6 β4 integrin expression on CTCs in distant metastasis.
Collapse
Affiliation(s)
- Mehran Sharifi
- Cancer Prevention Research Center, Isfahan Medical School, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahareh Zarrin
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Reza Hakimian
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Hosseini
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Talebi
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Arimori T, Miyazaki N, Mihara E, Takizawa M, Taniguchi Y, Cabañas C, Sekiguchi K, Takagi J. Structural mechanism of laminin recognition by integrin. Nat Commun 2021; 12:4012. [PMID: 34188035 PMCID: PMC8241838 DOI: 10.1038/s41467-021-24184-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6β1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin β1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the β-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.
Collapse
Affiliation(s)
- Takao Arimori
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Naoyuki Miyazaki
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Emiko Mihara
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Mamoru Takizawa
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Yukimasa Taniguchi
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Carlos Cabañas
- grid.465524.4Cell-cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Immunology, Ophthalmology and Otorhinolaryngology (IOO), Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain ,grid.144756.50000 0001 1945 5329Instituto de Investigación Sanitaria Hospital 12 Octubre (i+12), Madrid, Spain
| | - Kiyotoshi Sekiguchi
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Junichi Takagi
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| |
Collapse
|
15
|
Ibrahim MR, Medhat W, El-Fakahany H, Abdel-Raouf H, Snyder EY. The Developmental & Molecular Requirements for Ensuring that Human Pluripotent Stem Cell-Derived Hair Follicle Bulge Stem Cells Have Acquired Competence for Hair Follicle Generation Following Transplantation. Cell Transplant 2021; 30:9636897211014820. [PMID: 34053245 PMCID: PMC8182633 DOI: 10.1177/09636897211014820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
When using human induced pluripotent stem cells (hiPSCs) to achieve hair follicle (HF) replacement, we found it best to emulate the earliest fundamental developmental processes of gastrulation, ectodermal lineage commitment, and dermogenesis. Viewing hiPSCs as a model of the epiblast, we exploited insights from mapping the dynamic up- and down-regulation of the developmental molecules that determine HF lineage in order to ascertain the precise differentiation stage and molecular requirements for grafting HF-generating progenitors. To yield an integrin-dependent lineage like the HF in vivo, we show that hiPSC derivatives should co-express, just prior to transplantation, the following combination of markers: integrins α6 and β1 and the glycoprotein CD200 on their surface; and, intracellularly, the epithelial marker keratin 18 and the hair follicle bulge stem cell (HFBSC)-defining molecules transcription factor P63 and the keratins 15 and 19. If the degree of trichogenic responsiveness indicated by the presence of these molecules is not achieved (they peak on Days 11-18 of the protocol), HF generation is not possible. Conversely, if differentiation of the cells is allowed to proceed beyond the transient intermediate progenitor state represented by the HFBSC, and instead cascades to their becoming keratin 14+ keratin 5+ CD200– keratinocytes (Day 25), HF generation is equally impossible. We make the developmental case for transplanting at Day 16-18 of differentiation—the point at which the hiPSCs have lost pluripotency, have attained optimal expression of HFBSC markers, have not yet experienced downregulation of key integrins and surface glycoproteins, have not yet started expressing keratinocyte-associated molecules, and have sufficient proliferative capacity to allow a well-populated graft. This panel of markers may be used for isolating (by cytometry) HF-generating derivatives away from cell types unsuited for this therapy as well as for identifying trichogenic drugs.
Collapse
Affiliation(s)
- Michel R Ibrahim
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt.,Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Walid Medhat
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hasan El-Fakahany
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hamza Abdel-Raouf
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Evan Y Snyder
- Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.,Department of Pediatrics, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Dionísio MR, Vieira AF, Carvalho R, Conde I, Oliveira M, Gomes M, Pinto MT, Pereira P, Pimentel J, Souza C, Marques MMC, Duval da Silva V, Barroso A, Preto D, Cameselle-Teijeiro JF, Schmitt F, Ribeiro AS, Paredes J. BR-BCSC Signature: The Cancer Stem Cell Profile Enriched in Brain Metastases that Predicts a Worse Prognosis in Lymph Node-Positive Breast Cancer. Cells 2020; 9:cells9112442. [PMID: 33182375 PMCID: PMC7695320 DOI: 10.3390/cells9112442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Brain metastases remain an unmet clinical need in breast oncology, being frequently found in HER2-overexpressing and triple-negative carcinomas. These tumors were reported to be highly cancer stem-like cell-enriched, suggesting that brain metastases probably arise by the seeding of cancer cells with stem features. Accordingly, we found that brain-tropic breast cancer cells show increased stem cell activity and tumorigenic capacity in the chick embryo choriallantoic membrane when compared to the parental cell line. These observations were supported by a significant increase in their stem cell frequency and by the enrichment for the breast cancer stem cell (BCSC) phenotype CD44+CD24−/low. Based on this data, the expression of BCSC markers (CD44, CD49f, P-cadherin, EpCAM, and ALDH1) was determined and found to be significantly enriched in breast cancer brain metastases when compared to primary tumors. Therefore, a brain (BR)-BCSC signature was defined (3–5 BCSC markers), which showed to be associated with decreased brain metastases-free and overall survival. Interestingly, this signature significantly predicted a worse prognosis in lymph node-positive patients, acting as an independent prognostic factor. Thus, an enrichment of a BCSC signature was found in brain metastases, which can be used as a new prognostic factor in clinically challenging breast cancer patients.
Collapse
Affiliation(s)
- Maria Rita Dionísio
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (P.P.); (J.P.)
| | - André F. Vieira
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Rita Carvalho
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Inês Conde
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Mónica Oliveira
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Madalena Gomes
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Marta T. Pinto
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- In vivo CAM assays, i3S - Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Pereira
- Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (P.P.); (J.P.)
| | - José Pimentel
- Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (P.P.); (J.P.)
| | - Cristiano Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Barretos-SP 14784-400, Brazil; (C.S.); (A.B.); (D.P.)
| | - Márcia M. C. Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos-SP 14784-400, Brazil;
- Barretos School of Health Sciences - FACISB, Barretos-SP 14784-400, Brazil
| | | | - Alison Barroso
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Barretos-SP 14784-400, Brazil; (C.S.); (A.B.); (D.P.)
| | - Daniel Preto
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Barretos-SP 14784-400, Brazil; (C.S.); (A.B.); (D.P.)
| | | | - Fernando Schmitt
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of Porto University (FMUP), 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- Epithelial Interactions in Cancer (EPIC) group, i3S, Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (M.R.D.); (A.F.V.); (R.C.); (I.C.); (M.O.); (M.G.); (M.T.P.); (F.S.); (A.S.R.)
- IPATIMUP- Institute of Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of Porto University (FMUP), 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +35-12-2557-0700
| |
Collapse
|
17
|
Habowski AN, Flesher JL, Bates JM, Tsai CF, Martin K, Zhao R, Ganesan AK, Edwards RA, Shi T, Wiley HS, Shi Y, Hertel KJ, Waterman ML. Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Commun Biol 2020; 3:453. [PMID: 32814826 PMCID: PMC7438495 DOI: 10.1038/s42003-020-01181-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.
Collapse
Affiliation(s)
- Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jennifer M Bates
- Institute for Immunology, University of California Irvine, Irvine, CA, 92697, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kendall Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anand K Ganesan
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Dermatology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P, Bebek G, Singh S, Sizemore ST, Varadan V, Licatalosi DD, Keri RA. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem 2020; 295:11707-11719. [PMID: 32576660 PMCID: PMC7450125 DOI: 10.1074/jbc.ra120.014018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natasha N Ingles
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, USA
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, Columbus, Ohio, USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Tensin-3 Regulates Integrin-Mediated Proliferation and Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Cells 2019; 9:cells9010089. [PMID: 31905841 PMCID: PMC7017379 DOI: 10.3390/cells9010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023] Open
Abstract
Human palatine tonsils are potential tissue source of multipotent mesenchymal stem cells (MSCs). The proliferation rate of palatine tonsil-derived MSCs (TMSCs) is far higher than that of bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs (ADSCs). In our previous study, we had found through DNA microarray analysis that tensin-3 (TNS3), a type of focal adhesion protein, was more highly expressed in TMSCs than in both BMSCs and ADSCs. Here, the role of TNS3 in TMSCs and its relationship with integrin were investigated. TNS3 expression was significantly elevated in TMSCs than in other cell types. Cell growth curves revealed a significant decrease in the proliferation and migration of TMSCs treated with siRNA for TNS3 (siTNS3). siTNS3 treatment upregulated p16 and p21 levels and downregulated SOX2 expression and focal adhesion kinase, protein kinase B, and c-Jun N-terminal kinase phosphorylation. siTNS3 transfection significantly reduced adipogenic differentiation of TMSCs and slightly decreased osteogenic and chondrogenic differentiation. Furthermore, TNS3 inhibition reduced active integrin beta-1 (ITGβ1) expression, while total ITGβ1 expression was not affected. Inhibition of ITGβ1 expression in TMSCs by siRNA showed similar results observed in TNS3 inhibition. Thus, TNS3 may play an important role in TMSC proliferation and differentiation by regulating active ITGβ1 expression.
Collapse
|
20
|
Novoseletskaya ES, Grigorieva OA, Efimenko AY, Kalinina NI. Extracellular Matrix in the Regulation of Stem Cell Differentiation. BIOCHEMISTRY (MOSCOW) 2019; 84:232-240. [DOI: 10.1134/s0006297919030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|