1
|
Veronesi F, Contartese D, Di Sarno L, Borsari V, Fini M, Giavaresi G. In Vitro Models of Cell Senescence: A Systematic Review on Musculoskeletal Tissues and Cells. Int J Mol Sci 2023; 24:15617. [PMID: 37958603 PMCID: PMC10650924 DOI: 10.3390/ijms242115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1β, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Deyanira Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Laura Di Sarno
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| |
Collapse
|
2
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
3
|
Zhao YD, Huang YC, Lin JL, Li WS. Intervertebral Disc Progenitors: Lessons Learned from Single-Cell RNA Sequencing and the Role in Intervertebral Disc Regeneration. Bioengineering (Basel) 2023; 10:713. [PMID: 37370644 DOI: 10.3390/bioengineering10060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The tremendous personal and economic burden worldwide caused by low back pain (LBP) has been surging in recent years. While intervertebral disc degeneration (IVDD) is the leading cause of LBP and vast efforts have been made to develop effective therapies, this problem is far from being resolved, as most treatments, such as painkillers and surgeries, mainly focus on relieving the symptoms rather than reversing the cause of IVDD. However, as stem/progenitor cells possess the potential to regenerate IVD, a deeper understanding of the early development and role of these cells could help to improve the effectiveness of stem/progenitor cell therapy in treating LBP. Single-cell RNA sequencing results provide fresh insights into the heterogeneity and development patterns of IVD progenitors; additionally, we compare mesenchymal stromal cells and IVD progenitors to provide a clearer view of the optimal cell source proposed for IVD regeneration.
Collapse
Affiliation(s)
- Yu-Dong Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Wei-Shi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| |
Collapse
|
4
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Yang H, Yang X, Rong K, Liang J, Wang Z, Zhao J, Zhang P, Li Y, Wang L, Ma H, Ye B. Eupatilin attenuates the senescence of nucleus pulposus cells and mitigates intervertebral disc degeneration via inhibition of the MAPK/NF-κB signaling pathway. Front Pharmacol 2022; 13:940475. [PMID: 36408239 PMCID: PMC9669913 DOI: 10.3389/fphar.2022.940475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 10/25/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the main cause of low back pain. An increasing number of studies have suggested that inflammatory response or the senescence of nucleus pulposus (NP) cells is strongly associated with the progress of IDD. Eupatilin, the main flavonoid extracted from Artemisia, was reported to be associated with the inhibition of the intracellular inflammatory response and the senescence of cells. However, the relationship between eupatilin and IDD is still unknown. In this study, we explored the role of eupatilin in tumor necrosis factor-α (TNF-α)-induced activation of inflammatory signaling pathways and NP cell senescence, in the anabolism and catabolism of NP cell extracellular matrix (ECM) and in the effect of the puncture-induced model of caudal IDD in the rat. In vitro, eupatilin significantly inhibited TNF-α-induced ECM degradation, downregulated the expression of related markers of NP cells (MMP3, MMP9, and MMP13), and upregulated the expression of SOX9 and COL2A1. Furthermore, eupatilin reduced TNF-α-induced cell senescence by inhibiting the expression of the senescence of NP cell-related markers (p21 and p53). Mechanistically, ECM degradation and cell senescence were reduced by eupatilin, which inhibited the activation of MAPK/NF-κB signaling pathways. Consistent with the in vitro data, eupatilin administration ameliorated the puncture-induced model of caudal IDD in the rat. In conclusion, eupatilin can inhibit the inflammatory response and the senescence of NP cells, which may be a novel treatment strategy for IDD.
Collapse
Affiliation(s)
- Huan Yang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Second Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiarong Liang
- Second Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan College of Business Management, Kunming, Yunnan, China
| | - Zhengting Wang
- South Branch of Zhaotong First People’s Hospital, Zhaotong, Yunnan, China
- Northeast Yunnan Regional Central Hospital, Kunming, Yunnan, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yijie Li
- Second Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Lihuan Wang
- Second Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai, China
- Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Ye
- Second Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan St. John’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
6
|
Li XC, Luo SJ, Fan W, Zhou TL, Huang CM, Wang MS. M2 macrophage-conditioned medium inhibits intervertebral disc degeneration in a tumor necrosis factor-α-rich environment. J Orthop Res 2022; 40:2488-2501. [PMID: 35170802 DOI: 10.1002/jor.25292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Inflammation is the primary pathological phenomenon associated with disc degeneration; the inflammatory cytokine tumor necrosis factor (TNF-α) plays a crucial role in this pathology. The anti-inflammatory and regenerative effects of M2 macrophages on nucleus pulposus cells (NPCs) in intervertebral disc degeneration (IDD) progression remain unknown. Here, M2 conditioned medium (M2CM) was harvested and purified from human acute monocytic leukaemia cell line (THP-1) cells and mouse peritoneal macrophages, respectively; it was used for culturing human NPCs and a mouse intervertebral disc (IVD) organ culture model. NPCs and IVD organ models were divided into three groups: group 1 treated with 10% fetal bovine serum (control); group 2 treated with 10 ng/ml TNF-α; and group 3 treated with 10 ng/ml TNF-α and M2CM (coculture group). After 2-14 days, cell proliferation, extracellular matrix synthesis, apoptosis, and NPC senescence were assessed. Cell proliferation was reduced in TNF-α-treated NPCs and inhibited in the M2CM co-culture treatment. Moreover, TNF-α treatment enhanced apoptosis, senescence, and expression of inflammatory factor-related genes, including interleukin-6, MMP-13, ADAMTS-4, and ADAMTS-5, whereas M2CM coculture significantly reversed these effects. In addition, co-culture with M2CM promoted aggrecan and collagen II synthesis, but reduced collagen Iα1 levels in TNF-α treatment groups. Using our established three-dimensional murine IVD organ culture model, we show that M2CM suppressed the inhibitory effect of TNF-α-rich environment. Therefore, co-culture with M2CM promotes cell proliferation and extracellular matrix synthesis and inhibits inflammation, apoptosis, and NPC senescence. This study highlights the therapeutic potential of M2CM for IDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Cell Biology, Southern Medical University, Guangzhou, China.,Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Shao-Jian Luo
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Wu Fan
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Tian-Li Zhou
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Chun-Ming Huang
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Mao-Sheng Wang
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Cell Biology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
8
|
Ma R, Zhao L, Zhao Y, Li Y. Puerarin action on stem cell proliferation, differentiation and apoptosis: Therapeutic implications for geriatric diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153915. [PMID: 35026503 DOI: 10.1016/j.phymed.2021.153915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Aging is associated with a decline in cognitive and physical functions and various geriatric diseases, such as cardiovascular and neurodegenerative diseases. Puerarin (Pue), one of the main active flavonoids of Radix Puerariae (R. pueraria), is reportedly effective in treating geriatric diseases, including cardiovascular disease and hypertension. PURPOSE This review aims to summarize and discuss the profound physiological impact of Pue on various stem cell populations and provide new insights into the use of Pue for the prevention and treatment of geriatric diseases. METHODS The literature was retrieved from the core collection of electronic databases, such as Web of Science, Google Scholar, PubMed, and Science Direct, using the following keywords and terms: Puerarin, Stem Cell, Proliferation, Differentiation, Apoptosis, and Geriatric diseases. These keywords were used in multiple overlapping combinations. RESULTS Pue is effective in the treatment and management of age-related diseases, such as cardiovascular disease, diabetes, hypertension, and cerebrovascular disease. Pue exerts significant physiological effects on various stem cell populations, including their self-renewal/proliferation, differentiation and apoptosis. Most importantly, it could improve the efficiency and accuracy of stem cell therapy for treating various geriatric diseases. Further studies are essential to improve our understanding of the underlying mechanisms and elucidate their significance for future clinical applications. CONCLUSION The effects of Pue on various stem cell populations and their regulatory mechanisms are discussed in detail to provide new insights into the use of Pue in the prevention and treatment of geriatric diseases.
Collapse
Affiliation(s)
- Ruishuang Ma
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lucy Zhao
- Institute for Pharmacy and Molecular Biotechnology, Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Song M, Zhang Y, Sun Y, Kong M, Han S, Wang C, Wang Y, Xu D, Tu Q, Zhu K, Sun C, Li G, Zhao H, Ma X. Inhibition of RhoA/MRTF-A signaling alleviates nucleus pulposus fibrosis induced by mechanical stress overload. Connect Tissue Res 2022; 63:53-68. [PMID: 34420462 DOI: 10.1080/03008207.2021.1952193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM : Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, and clinically useful drugs for IDD are unavailable. Mechanical stress overload-induced fibrosis plays a critical role in IDD. RhoA/MRTF-A signaling is known to regulate tissue fibrosis; however, the effect of RhoA/MRTF-A on the development of IDD is unclear. MATERIALS AND METHODS : The expression of aggrecan, collagen I, collagen II, MMP-12, CTGF, and MRTF-A in nucleus pulposus (NP) samples from IDD patients and controls was detected by immunohistochemical staining. Primary nucleus pulposus cells (NPCs) were isolated and cultured to establish an overload strain model treated with or without CCG-1423. The protein levels of RhoA, ROCK2, MRTF-A, CTGF, and MMP-12 as well as fibrosis-associated proteins were detected by western blotting and immunofluorescence. RESULTS : Collagen I, MMP-12, and CTGF were significantly upregulated, and aggrecan and collagen II were significantly downregulated in the IDD samples. The cellular localization of MRTF-A was associated with intervertebral disc (IVD) degeneration. Overloaded strain enhanced the nuclear translocation of MRTF-A and changed the NPC morphology from spindle-shaped to long strips. Additional experiments showed that RhoA, ROCK2, MRTF-A, SRF, MMP-12, and CTGF were upregulated; however, aggrecan and collagen II were downregulated in NPCs under overload strain. CCG-1423, a RhoA/MRTF-A pathway inhibitor, reversed strain-induced fibrosis. CONCLUSION : Mechanical stress activates RhoA/MRTF-A signaling to promote extracellular matrix (ECM) degeneration in the NP, which is associated with the development of IDD. Our findings suggest that the RhoA/MRTF-A inhibitor CCG-1423 can alleviate NPC degeneration caused by overload stress and has potential as a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Mengxiong Song
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiran Zhang
- Shandong Institute of Orthopaedics and Traumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Kong
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuo Han
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Derong Xu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qihao Tu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Li
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
11
|
Zhang P, Gao G, Zhou Z, He X. microRNA-130b downregulation potentiates chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SOX9. ACTA ACUST UNITED AC 2021; 54:e10345. [PMID: 33624729 PMCID: PMC7894390 DOI: 10.1590/1414-431x202010345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a chronic health condition. MicroRNAs (miRs) are critical in chondrocyte apoptosis in OA. We aimed to investigate the mechanism of miR-130b in OA progression. Bone marrow mesenchymal stem cells (BMSCs) and chondrocytes were first extracted. Chondrogenic differentiation of BMSCs was carried out and verified. Chondrocytes were stimulated with interleukin (IL)-1β to imitate OA condition in vitro. The effect of miR-130b on the viability, inflammation, apoptosis, and extracellular matrix of OA chondrocytes was studied. The target gene of miR-130b was predicted and verified. Rescue experiments were performed to further study the underlying downstream mechanism of miR-130b in OA. miR-130b first increased and drastically reduced during chondrogenic differentiation of BMSCs and in OA chondrocytes, respectively, while IL-1β stimulation resulted in increased miR-130b expression in chondrocytes. miR-130b inhibitor promoted chondrogenic differentiation of BMSCs and chondrocyte growth and inhibited the levels of inflammatory factors. miR-130b targeted SOX9. Overexpression of SOX9 facilitated BMSC chondrogenic differentiation and chondrocyte growth, while siRNA-SOX9 contributed to the opposite trends. Silencing of SOX9 significantly attenuated the pro-chondrogenic effects of miR-130b inhibitor on BMSCs. Overall, miR-130b inhibitor induced chondrogenic differentiation of BMSCs and chondrocyte growth by targeting SOX9.
Collapse
Affiliation(s)
- Penggui Zhang
- The First Department of Orthopedics, Yulin First Hospital, Yulin, Shaanxi, China
| | - Guangming Gao
- The First Department of Orthopedics, Yulin First Hospital, Yulin, Shaanxi, China
| | - Ziyu Zhou
- The First Department of Orthopedics, Yulin First Hospital, Yulin, Shaanxi, China
| | - Xuejun He
- The Second Department of Orthopedics, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| |
Collapse
|
12
|
Nan LP, Wang F, Ran D, Zhou SF, Liu Y, Zhang Z, Huang ZN, Wang ZY, Wang JC, Feng XM, Zhang L. Naringin alleviates H 2O 2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:554-567. [PMID: 31294637 DOI: 10.1080/03008207.2019.1631299] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To investigate the protective effect of naringin (Nar) on H2O2-induced apoptosis of nucleus pulposus-derived mesenchymal stem cells (NPMSC) and the potential mechanism in this process. Methods: Rat NPMSC were cultured in MSC culture medium or culture medium with different concentrations of H2O2. Nar or the combination of Nar and LY294002 was added into the culture medium to investigate the effects of Nar. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined using Annexin V/PI dual staining and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays. Additionally, the levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. ATP level in NPMSC was analyzed via ATP detection kit. Mitochondrial ultrastructure change was observed through transmission electron microscope (TEM). Levels of apoptosis-associated molecules (cleaved caspase-3, Bax and Bcl-2) were evaluated via RT-PCR and western blot, respectively. Results: The cells isolated from NP met the criteria for MSC. H2O2 significantly promoted NPMSC apoptosis in a dose and time-dependent manner. Nar showed no cytotoxicity effect on NPMSC up to a concentration of 100 μM for 24 h. Nar exhibited protective effects against H2O2-induced NPMSC apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. Nar could also alleviate H2O2-induced mitochondrial dysfunction of increased mitochondrial ROS production, reduced MMP, decreased intracellular ATP and mitochondrial ultrastructure change. However, these protected effects were inhibited after LY294002 treatment. Conclusions: Our results demonstrated that Nar efficiently attenuated H2O2-induced NPMSC apoptosis and mitochondrial dysfunction. The activation of ROS-mediated PI3K/Akt pathway may be the potential mechanism in this process.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Zhen Zhang
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Ze-Nan Huang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Ze-Yu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Jing-Cheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Ou X, Ying J, Bai X, Wang C, Ruan D. Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration. Int J Mol Med 2020; 46:1074-1084. [PMID: 32705163 PMCID: PMC7387093 DOI: 10.3892/ijmm.2020.4668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a condition involving disruption of the bone tissue distribution. Nucleus pulposus mesenchymal stem cells (NPMSCs) and Sirtuin 1 (SIRT1) play important roles in bone diseases, therefore the aim of the present study was to evaluate the roles of SIRT1 and NPMSCs in IDD. First, NPMSCs were harvested from patients with IDD. Then, the NPMSCs were treated with a SIRT activator, and monocyte chemoattractant protein 1 (MCP1) and chemokine receptor 2 (CCR2) inhibitors. Indices related to NPMSC growth, proliferation, differentiation and apoptosis were measured. Subsequently, IDD rat models were established and were transfected with NPMSCs overexpressing SIRT1. NPMSC apoptosis and cartilage differentiation were detected in the rat IDD model. SIRT1 expression was found to be decreased, and the expression of MCP1 and CCR2 increased in NPMSCs of patients with IDD. The upregulation of SIRT1 and the downregulation of the MCP1/CCR2 axis promoted cartilage differentiation and reduced the number of apoptotic NPMSCs. Furthermore, MCP1 reversed the progression of the cartilage differentiation of NPMSCs and the inhibition of NPMSC apoptosis induced by SIRT1 overexpression. Moreover, the transplantation of rat NPMSCs overexpressing SIRT1 relieved IDD in rats. Therefore, SIRT1 overexpression improved cartilage differentiation and reduced the apoptosis of NPMSCs by inactivating the MCP1/CCR2 axis, thus attenuating IDD in rats.
Collapse
Affiliation(s)
- Xuancheng Ou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinwei Ying
- Department of Orthopedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuedong Bai
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing 100048, P.R. China
| | - Chaofeng Wang
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing 100048, P.R. China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Feng XM, Liu H, Zhang L. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12:266-276. [PMID: 32399135 PMCID: PMC7202923 DOI: 10.4252/wjsc.v12.i4.266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yan Li
- Department of Oncology, The Affiliated Cancer Hospital, School of Medicine, UESTC, Chengdu 610000, Sichuan Province, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
15
|
Zhang B, Zhao Q, Li Y, Zhang J. Moxibustion alleviates intervertebral disc degeneration via activation of the HIF-1α/VEGF pathway in a rat model. Am J Transl Res 2019; 11:6221-6231. [PMID: 31632589 PMCID: PMC6789265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration (IDD) induces serious back, neck and radicular pain. Recently, moxibustion has been suggested as an effective treatment for IDD. Thus, our study aims to investigate the molecular mechanism of moxibustion in IDD. A rat model of IDD was established by moxibustion treatment. Nucleus pulposus (NP) cells isolated from IDD rats or IDD rats treated with moxibustion were transfected with plasmids harboring overexpressed hypoxia-inducible factor-1 alpha (HIF-1α) to understand the role of treatment on cell autophagy and apoptosis. To investigate the mechanism of moxibustion in IDD, aggrecan, cyclo-oxygenase 2 (COX-2), HIF-1α and vascular endothelial growth factor (VEGF) expression in NP cells was measured. The expression of aggrecan and COX-2 was elevated by moxibustion treatment. Moxibustion induced autophagy and suppressed apoptosis of NP cells from IDD rats. Compared with IDD rats, the expression of light chain 3 (LC3) II/I, Beclin-1, B-cell lymphoma-2 (Bcl-2) and HIF-1α was regulated significantly after moxibustion treatment, while the expression of cleaved-caspase-3, Bcl-2 associated protein X and VEGF was downregulated. In general, moxibustion may be beneficial to IDD by enhancing autophagy and reducing apoptosis of NP cells via the HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Qian Zhao
- Department of Medical Ultrasonics, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Yushi Li
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Jinxue Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| |
Collapse
|
16
|
Zhan S, Wang K, Xiang Q, Song Y, Li S, Liang H, Luo R, Wang B, Liao Z, Zhang Y, Yang C. lncRNA HOTAIR upregulates autophagy to promote apoptosis and senescence of nucleus pulposus cells. J Cell Physiol 2019; 235:2195-2208. [PMID: 31478571 DOI: 10.1002/jcp.29129] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Shengfeng Zhan
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Department of Orthopaedics Enshi Center Hospital Enshi China
| | - Kun Wang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Qian Xiang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yu Song
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shuai Li
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Hang Liang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Rongjin Luo
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjin Wang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhiwei Liao
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yukun Zhang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Cao Yang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
17
|
Li X, Lin F, Wu Y, Liu N, Wang J, Chen R, Lu Z. Resveratrol attenuates inflammation environment-induced nucleus pulposus cell senescence in vitro. Biosci Rep 2019; 39:BSR20190126. [PMID: 30962260 PMCID: PMC6509054 DOI: 10.1042/bsr20190126] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Intervertebral disc degeneration is a disease identified as an inflammation response-participated pathological process. As a classical cellular feature, disc cell senescence is reported to be closely related with disc cell senescence. Resveratrol has a protective role against inflammation in some cells. However, its biological effects on disc cells remain largely unclear. The present study was aimed to study the effects of resveratrol on disc nucleus pulposus (NP) cell senescence in an inflammation environment. Isolated NP cells were cultured in cultured medium with (control group) or without (inflammation group) inflammatory cytokine TNF-α and IL-1β for 14 days. Resveratrol was added along with the NP cells treated with inflammatory cytokines to investigate its effects. NP cell senescence was analyzed by senescence-associated β-Galactosidase (SA-β-Gal) staining, cell proliferation, G0/1 cell cycle arrest, telomerase activity, gene/protein expression of senescence markers (p16 and p53) and NP matrix biosynthesis. In addition, the intracellular reactive oxygen species (ROS) was also analyzed. Compared with the control group, inflammation group significantly increased SA-β-Gal activity and ROS content, decreased cell proliferation and telomerase activity, promoted G0/1 cell cycle arrest, up-regulated gene/protein expression of senescence markers (p16 and p53) and matrix catabolism enzymes (MMP-3, MMP-13 and ADAMTS-4), and down-regulated gene/protein expression of NP matrix macromolecules (aggrecan and collagen II). However, resveratrol partly reversed the effects of inflammatory cytokine on these cell senescence-associated parameters. Together, resveratrol was effective to suppress cell senescence in an inflammatory environment. The present study shows new knowledge on how to retard inflammation response-initiated disc degeneration.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Feixiang Lin
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Yaohong Wu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Ning Liu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Jun Wang
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Rongchun Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Zhijun Lu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
18
|
Zhang X, Qiao B, Hu Z, Ni W, Guo S, Luo G, Zhang H, Ren H, Zou L, Wang P, Shui W. BMP9 Promotes the Extracellular Matrix of Nucleus Pulposus Cells via Inhibition of the Notch Signaling Pathway. DNA Cell Biol 2019; 38:358-366. [PMID: 30758228 DOI: 10.1089/dna.2018.4478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a common disease that is caused by degeneration of the nucleus pulposus (NP). One goal in the treatment of IDD is delaying or reversing the degeneration of NP via the transformation of exogenous genes. This study first investigated the role of BMP9 in the extracellular matrix (ECM) of nucleus pulposus cells (NPCs) and its mechanism. We found that BMP9 promotes the expression of ECM in NPCs, and the key molecules of Notch signaling, namely, NICD-1, hes and hey, and it was significantly altered in BMP9-transfected NPCs, which suggests that BMP9 may regulate the ECM via the Notch signaling pathway. We verified the expression of Notch ligands and receptors in NPCs infected with Ad-BMP9 and demonstrated a significant decrease in DLL1 and Notch1; then, NPCs were transfected with Ad-dnNotch1, Ad-Jagged1, and Ad-DLL1, and different multiple groups were established to further identify the ligands or receptors that affected ECM expression. The results demonstrated that Ad-dnNotch1, Jagged1 and DLL1 inhibited ECM expression, and dnNotch1 promoted expression. Therefore, we demonstrated that BMP9 promoted the expression of ECM in NPCs via inhibition of Notch1 and DLL1. This study provides a possible method for IDD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuquan Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanxiang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Honglei Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lvetao Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Shui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|