1
|
Lee YS, Gavzy SJ, Jang J, Kamberi S, Zhang T, Sands L, Scalea JR. Transport-Associated Vibrational Stress Triggers Drug-Reversible Apoptosis and Cardiac Allograft Failure in Mice. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:145-150. [PMID: 36816099 PMCID: PMC9904449 DOI: 10.1109/jtehm.2023.3239790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Increasingly complex and long-range donor organ allocation routes coupled with implementation of unmanned aerial vehicles (UAVs) have prompted investigations of the conditions affecting organs once packaged for shipment. Our group has previously demonstrated that different modes of organ transport exert unique environmental stressors, in particular vibration. Using a mouse heart transplant model, we demonstrated that vibrational forces exert tangible, cellular effects in the form of cardiomyocyte apoptosis and cytoskeletal derangement. Functionally, these changes translated into accelerated allograft loss. Notably, administration of an apoptosis inhibitor, Z-VAD-FMK, helped to ameliorate the detrimental cellular and functional effects of mechanical vibration in a dose-dependent manner. These findings constitute one of the first reports of the negative impact of transit environment on transplant outcomes, a contributing mechanism underpinning this effect, and a potential agent to prophylax against this process. Given current limitations in measuring donor organ transit environments in situ, further study is required to better characterize the impact of transport environment and to potentially improve the care of donor organs during shipment. Clinical and Translational Impact Statement: We show that apoptosis inhibitor, Z-VAD-FMK, ameliorated transport-related vibrational stress in murine heart transplants, which presents a potential therapeutic or preservation solution additive for future use in transporting donor organs.
Collapse
Affiliation(s)
- Young S. Lee
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Samuel J. Gavzy
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Jihyun Jang
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Shani Kamberi
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Tianshu Zhang
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Lauren Sands
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Joseph R. Scalea
- Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Center for Vascular and Inflammatory DiseasesUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Department of SurgeryMedical University of South CarolinaCharlestonSC29425USA
| |
Collapse
|
2
|
Yu N, Qiu J, Li K, Luo Q, Liu X, Yang Y, Jiang Z, He S, He A, Chen S, Chen X, Li Y, Ge J, Zhuang J, Yu K. Comparison of DNA stability and its related genes of neurons derived from induced pluripotent stem cells and primary retinal neurons. Cell Biol Int 2022; 46:1625-1636. [PMID: 35771585 DOI: 10.1002/cbin.11837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/05/2022] [Accepted: 05/28/2022] [Indexed: 11/12/2022]
Abstract
Maintaining DNA stability in induced pluripotent stem cells (iPSCs) and iPSCs-derived neurons is a challenge in their clinical application. In the present study, we compared DNA stability between primary retinal neurons and differentiated neurons. We found that the basal level of γ-H2AX phosphorylation, a specific marker of DNA breaks, was notably higher (~26-folds) in human iPSCs compared to iPSCs-derived neurons. However, iPSCs-derived neurons are more sensitive to UV treatment compared to primary rat retinal neurons (postnatal Day 1). UV treatment induced a significantly decreasing in the cell viability of iPSCs-derived neurons by ~76.1%, whereas ~20.8% in primary retinal neurons. After analyzing the expression levels of genes involved in DNA stability, such as Brca1, Ligase IV, Ku80, and Mre11, we found that Ku80 and its heterodimeric partner, Ku70 were positive in iPSCs-derived neurons. However, both Ku80 and Ku70 are not expressed in primary retinal neurons and cerebellar neurons. Similarly, both Ku80 and Ku70 are also expressed in 3D retinal organoids from human embryonic stem cells (ESCs), except for a few Map2-negative cells and the hyaloid vessels of mice E12.5 retinas. Hence, Ku80, and Ku70 are specifically expressed in stem cell-derived neurons. Moreover, using the Ku80 inhibitor Compound L, our data showed that Ku80 promotes the DNA stability and cell viability of iPSCs-derived neurons. Thus, our results demonstrated that iPSCs-, ESCs-derived neurons have specific characteristics of DNA stability. This study provides new insights into the neural differentiation of stem cells but might also warrant the future clinical application of stem cells in neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shengyu He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anqi He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Xing Gao Z, Long Cui Z, Ran Zhou M, Fu Y, Liu F, Zhang L, Ma S, Yan Chen C. The new mitochondrial uncoupler BAM15 induces ROS production for treatment of acute myeloid leukemia. Biochem Pharmacol 2022; 198:114948. [PMID: 35192847 DOI: 10.1016/j.bcp.2022.114948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant proliferative disease of myeloid hematopoietic origin and cannot be treated appropriately at present. This is due to the fact that leukemia cells are not sensitive to some of the traditional chemotherapy drugs. Or some chemotherapeutic drugs are too toxic to normal cells, affecting their wide clinical application. In this study, we identified BAM15 as a novel mitochondrial uncoupling agent by screening a library of small molecule compounds that inhibit AML cell activity. BAM15 significantly inhibited proliferation and promoted apoptosis in AML cells while at the same time being less cytotoxic to normal cells. The mechanism may be related to the disturbance of the ROS production balance. In vivo investigations revealed that BAM15 effectively suppressed AML progression and prolonged the survival time of mice. In addition, we found that BAM15 can be used in combination with cytarabine to enhance its anti-cancer activity and inhibit the activity of primary cells in AML. Therefore, we identified BAM15 as a potential drug candidate for the treatment of AML.
Collapse
Affiliation(s)
- Zhen Xing Gao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ze Long Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Ran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Chun Yan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Yang R, Yang S, Li K, Luo Z, Xian B, Tang J, Ye M, Lu S, Zhang H, Ge J. Carbon Nanotube Polymer Scaffolds as a Conductive Alternative for the Construction of Retinal Sheet Tissue. ACS Chem Neurosci 2021; 12:3167-3175. [PMID: 34375091 DOI: 10.1021/acschemneuro.1c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
With the great success of graphene in the biomedical field, carbon nanotubes have attracted increasing attention for different applications in ophthalmology. Here, we report a novel retinal sheet composed of carbon nanotubes (CNTs) and poly(lactic-co-glycolic acid) (PLGA) that can enhance retinal cell therapy. By tuning our CNTs to regulate the mechanical characteristics of retina sheets, we were able to improve the in vitro viability of retinal ganglion cells derived from human-induced pluripotent stem cells incorporated into CNTs. Engrafted retinal ganglion cells displayed signs of regenerating processes along the optic nerve. Compared with PLGA scaffolds, CNT-PLGA retinal sheet tissue has excellent electrical conductivity, biocompatibility, and biodegradation. This new biomaterial offers new insight into retinal injury, repair, and regeneration.
Collapse
Affiliation(s)
- Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Sijing Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Hangzhou, Zhejiang 310000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jiaqi Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Shoutao Lu
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
5
|
Dang CP, Issara-Amphorn J, Charoensappakit A, Udompornpitak K, Bhunyakarnjanarat T, Saisorn W, Sae-Khow K, Leelahavanichkul A. BAM15, a Mitochondrial Uncoupling Agent, Attenuates Inflammation in the LPS Injection Mouse Model: An Adjunctive Anti-Inflammation on Macrophages and Hepatocytes. J Innate Immun 2021; 13:359-375. [PMID: 34062536 PMCID: PMC8613553 DOI: 10.1159/000516348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Controlof immune responses through the immunometabolism interference is interesting for sepsis treatment. Then, expression of immunometabolism-associated genes and BAM15, a mitochondrial uncoupling agent, was explored in a proinflammatory model using lipopolysaccharide (LPS) injection. Accordingly, the decreased expression of mitochondrial uncoupling proteins was demonstrated by transcriptomic analysis on metabolism-associated genes in macrophages (RAW246.7) and by polymerase chain reaction in LPS-stimulated RAW246.7 and hepatocytes (Hepa 1-6). Pretreatment with BAM15 at 24 h prior to LPS in macrophages attenuated supernatant inflammatory cytokines (IL-6, TNF-α, and IL-10), downregulated genes of proinflammatory M1 polarization (iNOS and IL-1β), upregulated anti-inflammatory M2 polarization (Arg1 and FIZZ), and decreased cell energy status (extracellular flux analysis and ATP production). Likewise, BAM15 decreased expression of proinflammatory genes (IL-6, TNF-α, IL-10, and iNOS) and reduced cell energy in hepatocytes. In LPS-administered mice, BAM15 attenuated serum cytokines, organ injury (liver enzymes and serum creatinine), and tissue cytokines (livers and kidneys), in part, through the enhanced phosphorylated αAMPK, a sensor of ATP depletion with anti-inflammatory property, in the liver, and reduced inflammatory monocytes/macrophages (Ly6C +ve, CD11b +ve) in the liver as detected by Western blot and flow cytometry, respectively. In conclusion, a proof of concept for inflammation attenuation of BAM15 through metabolic interference-induced anti-inflammation on macrophages and hepatocytes was demonstrated as a new strategy of anti-inflammation in sepsis.
Collapse
Affiliation(s)
- Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand,
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,
| | | | - Awirut Charoensappakit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Lian F, Ye Q, Feng B, Cheng H, Niu S, Fan N, Wang D, Wang Z. rAAV9-UPII-TK-EGFP can precisely transduce a suicide gene and inhibit the growth of bladder tumors. Cancer Biol Ther 2020; 21:1171-1178. [PMID: 33218277 DOI: 10.1080/15384047.2020.1844115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bladder cancer is a common and widespread cancer of the human urinary system, and its incidence is increasing. Gene therapy is a promising treatment of bladder cancer. In our study, a recombinant adeno-associated virus (rAAV9-UPII-TK-EGFP) driven by a UPII promoter was constructed. The efficacy and safety of infection of bladder cells was tested in vivo and in vitro. The ability of rAAV9-UPII-TK-EGFP to penetrate the glycosaminoglycan (GAG) layer on the surface of bladder cells and to transduce the bladder cells in vivo was very high. Additionally, we confirmed that the TK/GCV system has a powerful cytotoxic effect on bladder tumor cells in vitro and in vivo. Thus, our data indicate that rAAV9-UPII-TK-EGFP is a precise gene drug delivery system for the treatment of bladder cancer, and the TK/GCV therapeutic strategy has a powerful antitumor effect. These findings can be widely used in clinical and scientific studies.
Collapse
Affiliation(s)
- Foyan Lian
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Qiang Ye
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Bing Feng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Hui Cheng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Shaomin Niu
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Ning Fan
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University , Lanzhou, China
| | - Zhiping Wang
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| |
Collapse
|