1
|
Guz W, Podgórski R, Aebisher D, Truszkiewicz A, Machorowska-Pieniążek A, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. Utility of 1.5 Tesla MRI Scanner in the Management of Small Sample Sizes Driven from 3D Breast Cell Culture. Int J Mol Sci 2024; 25:3009. [PMID: 38474256 DOI: 10.3390/ijms25053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Rafał Podgórski
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | | | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| |
Collapse
|
2
|
Qiao H, Chen Y, Qian C, Guo Y. Clinical data mining: challenges, opportunities, and recommendations for translational applications. J Transl Med 2024; 22:185. [PMID: 38378565 PMCID: PMC10880222 DOI: 10.1186/s12967-024-05005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
Clinical data mining of predictive models offers significant advantages for re-evaluating and leveraging large amounts of complex clinical real-world data and experimental comparison data for tasks such as risk stratification, diagnosis, classification, and survival prediction. However, its translational application is still limited. One challenge is that the proposed clinical requirements and data mining are not synchronized. Additionally, the exotic predictions of data mining are difficult to apply directly in local medical institutions. Hence, it is necessary to incisively review the translational application of clinical data mining, providing an analytical workflow for developing and validating prediction models to ensure the scientific validity of analytic workflows in response to clinical questions. This review systematically revisits the purpose, process, and principles of clinical data mining and discusses the key causes contributing to the detachment from practice and the misuse of model verification in developing predictive models for research. Based on this, we propose a niche-targeting framework of four principles: Clinical Contextual, Subgroup-Oriented, Confounder- and False Positive-Controlled (CSCF), to provide guidance for clinical data mining prior to the model's development in clinical settings. Eventually, it is hoped that this review can help guide future research and develop personalized predictive models to achieve the goal of discovering subgroups with varied remedial benefits or risks and ensuring that precision medicine can deliver its full potential.
Collapse
Affiliation(s)
- Huimin Qiao
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yijing Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Changshun Qian
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China.
- Ganzhou Key Laboratory of Medical Big Data, Ganzhou, China.
| |
Collapse
|
3
|
Ji C, Tang Y, Zhang Y, Huang X, Li C, Yang Y, Wu Q, Xia X, Cai Q, Qi XR, Zheng JC. Glutaminase 1 deficiency confined in forebrain neurons causes autism spectrum disorder-like behaviors. Cell Rep 2023; 42:112712. [PMID: 37384529 DOI: 10.1016/j.celrep.2023.112712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
An abnormal glutamate signaling pathway has been proposed in the mechanisms of autism spectrum disorder (ASD). However, less is known about the involvement of alterations of glutaminase 1 (GLS1) in the pathophysiology of ASD. We show that the transcript level of GLS1 is significantly decreased in the postmortem frontal cortex and peripheral blood of ASD subjects. Mice lacking Gls1 in CamKIIα-positive neurons display a series of ASD-like behaviors, synaptic excitatory and inhibitory (E/I) imbalance, higher spine density, and glutamate receptor expression in the prefrontal cortex, as well as a compromised expression pattern of genes involved in synapse pruning and less engulfed synaptic puncta in microglia. A low dose of lipopolysaccharide treatment restores microglial synapse pruning, corrects synaptic neurotransmission, and rescues behavioral deficits in these mice. In summary, these findings provide mechanistic insights into Gls1 loss in ASD symptoms and identify Gls1 as a target for the treatment of ASD.
Collapse
Affiliation(s)
- Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaoyan Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yuhong Yang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai 200331, China
| | - Qingyuan Cai
- Franklin and Marshall College, 415 Harrisburg Avenue, Lancaster, PA 17603, USA
| | - Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai 200331, China.
| |
Collapse
|
4
|
Kumar A, He S, Mali P. Systematic discovery of transcription factors that improve hPSC-derived cardiomyocyte maturation via temporal analysis of bioengineered cardiac tissues. APL Bioeng 2023; 7:026109. [PMID: 37252678 PMCID: PMC10219684 DOI: 10.1063/5.0137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have the potential to become powerful tools for disease modeling, drug testing, and transplantation; however, their immaturity limits their applications. Transcription factor (TF) overexpression can improve hPSC-CM maturity, but identifying these TFs has been elusive. Toward this, we establish here an experimental framework for systematic identification of maturation enhancing factors. Specifically, we performed temporal transcriptome RNAseq analyses of progressively matured hPSC-derived cardiomyocytes across 2D and 3D differentiation systems and further compared these bioengineered tissues to native fetal and adult-derived tissues. These analyses revealed 22 TFs whose expression did not increase in 2D differentiation systems but progressively increased in 3D culture systems and adult mature cell types. Individually overexpressing each of these TFs in immature hPSC-CMs identified five TFs (KLF15, ZBTB20, ESRRA, HOPX, and CAMTA2) as regulators of calcium handling, metabolic function, and hypertrophy. Notably, the combinatorial overexpression of KLF15, ESRRA, and HOPX improved all three maturation parameters simultaneously. Taken together, we introduce a new TF cocktail that can be used in solo or in conjunction with other strategies to improve hPSC-CM maturation and anticipate that our generalizable methodology can also be implemented to identify maturation-associated TFs for other stem cell progenies.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Starry He
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
5
|
Zheng H, Xie J, Song K, Yang J, Xiao H, Zhang J, Li K, Yuan R, Zhao Y, Gu Y, Zhao W. StemSC: a cross-dataset human stemness index for single-cell samples. Stem Cell Res Ther 2022; 13:115. [PMID: 35313979 PMCID: PMC8935746 DOI: 10.1186/s13287-022-02803-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stemness is defined as the potential of cells for self-renewal and differentiation. Many transcriptome-based methods for stemness evaluation have been proposed. However, all these methods showed low negative correlations with differentiation time and can't leverage the existing experimentally validated stem cells to recognize the stem-like cells. METHODS Here, we constructed a stemness index for single-cell samples (StemSC) based on relative expression orderings (REO) of gene pairs. Firstly, we identified the stemness-related genes by selecting the genes significantly related to differentiation time. Then, we used 13 RNA-seq datasets from both the bulk and single-cell embryonic stem cell (ESC) samples to construct the reference REOs. Finally, the StemSC value of a given sample was calculated as the percentage of gene pairs with the same REOs as the ESC samples. RESULTS We validated the StemSC by its higher negative correlations with differentiation time in eight normal datasets and its higher positive correlations with tumor dedifferentiation in three colorectal cancer datasets and four glioma datasets. Besides, the robust of StemSC to batch effect enabled us to leverage the existing experimentally validated cancer stem cells to recognize the stem-like cells in other independent tumor datasets. And the recognized stem-like tumor cells had fewer interactions with anti-tumor immune cells. Further survival analysis showed the immunotherapy-treated patients with high stemness had worse survival than those with low stemness. CONCLUSIONS StemSC is a better stemness index to calculate the stemness across datasets, which can help researchers explore the effect of stemness on other biological processes.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajing Xie
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Jing Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Huiting Xiao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Jiashuai Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Keru Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Rongqiang Yuan
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yuting Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
6
|
Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. BIOLOGY 2021; 10:biology10100981. [PMID: 34681080 PMCID: PMC8533352 DOI: 10.3390/biology10100981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.
Collapse
|
7
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
8
|
Yang J, Ding N, Zhao D, Yu Y, Shao C, Ni X, Zhao ZA, Li Z, Chen J, Ying Z, Yu M, Lei W, Hu S. Intermittent Starvation Promotes Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021; 9:687769. [PMID: 34395420 PMCID: PMC8362881 DOI: 10.3389/fcell.2021.687769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent an infinite cell source for cardiovascular disease modeling, drug screening and cell therapy. Despite extensive efforts, current approaches have failed to generate hPSC-CMs with fully adult-like phenotypes in vitro, and the immature properties of hPSC-CMs in structure, metabolism and electrophysiology have long been impeding their basic and clinical applications. The prenatal-to-postnatal transition, accompanied by severe nutrient starvation and autophagosome formation in the heart, is believed to be a critical window for cardiomyocyte maturation. In this study, we developed a new strategy, mimicking the in vivo starvation event by Earle's balanced salt solution (EBSS) treatment, to promote hPSC-CM maturation in vitro. We found that EBSS-induced starvation obviously activated autophagy and mitophagy in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Intermittent starvation, via 2-h EBSS treatment per day for 10 days, significantly promoted the structural, metabolic and electrophysiological maturation of hESC-CMs. Structurally, the EBSS-treated hESC-CMs showed a larger cell size, more organized contractile cytoskeleton, higher ratio of multinucleation, and significantly increased expression of structure makers of cardiomyocytes. Metabolically, EBSS-induced starvation increased the mitochondrial content in hESC-CMs and promoted their capability of oxidative phosphorylation. Functionally, EBSS-induced starvation strengthened electrophysiological maturation, as indicated by the increased action potential duration at 90% and 50% repolarization and the calcium handling capacity. In conclusion, our data indicate that EBSS intermittent starvation is a simple and efficient approach to promote hESC-CM maturation in structure, metabolism and electrophysiology at an affordable time and cost.
Collapse
Affiliation(s)
- Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Nan Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Chunlai Shao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Maturation of human pluripotent stem cell derived cardiomyocytes in vitro and in vivo. Semin Cell Dev Biol 2021; 118:163-171. [PMID: 34053865 DOI: 10.1016/j.semcdb.2021.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs. We summarize the state-of-the-art and relative merits of reported hPSC-CM maturation strategies including prolonged duration in culture, metabolic manipulation, treatment with soluble or substrate-based cues, and tissue engineering approaches. Finally, we review the evidence that hPSC-CMs mature after implantation in injured hearts as such in vivo remodeling will likely affect the safety and efficacy of a potential hPSC-based cardiac therapy.
Collapse
|
10
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
|
12
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
13
|
Ahmed RE, Anzai T, Chanthra N, Uosaki H. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol 2020; 8:178. [PMID: 32266260 PMCID: PMC7096382 DOI: 10.3389/fcell.2020.00178] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Therefore, the discovery of induced pluripotent stem cells (iPSCs) and the subsequent generation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) was a pivotal point in regenerative medicine and cardiovascular research. They constituted an appealing tool for replacing dead and dysfunctional cardiac tissue, screening cardiac drugs and toxins, and studying inherited cardiac diseases. The problem is that these cells remain largely immature, and in order to utilize them, they must reach a functional degree of maturity. To attempt to mimic in vivo environment, various methods including prolonging culture time, co-culture and modulations of chemical, electrical, mechanical culture conditions have been tried. In addition to that, changing the topology of the culture made huge progress with the introduction of the 3D culture that closely resembles the in vivo cardiac topology and overcomes many of the limitations of the conventionally used 2D models. Nonetheless, 3D culture alone is not enough, and using a combination of these methods is being explored. In this review, we summarize the main differences between immature, fetal-like hiPSC-CMs and adult cardiomyocytes, then glance at the current approaches used to promote hiPSC-CMs maturation. In the second part, we focus on the evolving 3D culture model - it's structure, the effect on hiPSC-CMs maturation, incorporation with different maturation methods, limitations and future prospects.
Collapse
Affiliation(s)
- Razan Elfadil Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
14
|
Zheng H, Song K, Fu Y, You T, Yang J, Guo W, Wang K, Jin L, Gu Y, Qi L, Zhao W. An absolute human stemness index associated with oncogenic dedifferentiation. Brief Bioinform 2020; 22:2151-2160. [PMID: 32119069 DOI: 10.1093/bib/bbz174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
The progression of cancer is accompanied by the acquisition of stemness features. Many stemness evaluation methods based on transcriptional profiles have been presented to reveal the relationship between stemness and cancer. However, instead of absolute stemness index values-the values with certain range-these methods gave the values without range, which makes them unable to intuitively evaluate the stemness. Besides, these indices were based on the absolute expression values of genes, which were found to be seriously influenced by batch effects and the composition of samples in the dataset. Recently, we have showed that the signatures based on the relative expression orderings (REOs) of gene pairs within a sample were highly robust against these factors, which makes that the REO-based signatures have been stably applied in the evaluations of the continuous scores with certain range. Here, we provided an absolute REO-based stemness index to evaluate the stemness. We found that this stemness index had higher correlation with the culture time of the differentiated stem cells than the previous stemness index. When applied to the cancer and normal tissue samples, the stemness index showed its significant difference between cancers and normal tissues and its ability to reveal the intratumor heterogeneity at stemness level. Importantly, higher stemness index was associated with poorer prognosis and greater oncogenic dedifferentiation reflected by histological grade. All results showed the capability of the REO-based stemness index to assist the assignment of tumor grade and its potential therapeutic and diagnostic implications.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Yelin Fu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Tianyi You
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jing Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wenbing Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liangliang Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
15
|
RNA-Based Strategies for Cardiac Reprogramming of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9020504. [PMID: 32098400 PMCID: PMC7072829 DOI: 10.3390/cells9020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Multipotent adult mesenchymal stromal cells (MSCs) could represent an elegant source for the generation of patient-specific cardiomyocytes needed for regenerative medicine, cardiovascular research, and pharmacological studies. However, the differentiation of adult MSC into a cardiac lineage is challenging compared to embryonic stem cells or induced pluripotent stem cells. Here we used non-integrative methods, including microRNA and mRNA, for cardiac reprogramming of adult MSC derived from bone marrow, dental follicle, and adipose tissue. We found that MSC derived from adipose tissue can partly be reprogrammed into the cardiac lineage by transient overexpression of GATA4, TBX5, MEF2C, and MESP1, while cells isolated from bone marrow, and dental follicle exhibit only weak reprogramming efficiency. qRT-PCR and transcriptomic analysis revealed activation of a cardiac-specific gene program and up-regulation of genes known to promote cardiac development. Although we did not observe the formation of fully mature cardiomyocytes, our data suggests that adult MSC have the capability to acquire a cardiac-like phenotype when treated with mRNA coding for transcription factors that regulate heart development. Yet, further optimization of the reprogramming process is mandatory to increase the reprogramming efficiency.
Collapse
|
16
|
Yang H, Zhong W, Hamidi MR, Zhou G, Liu C. Functional improvement and maturation of human cardiomyocytes derived from human pluripotent stem cells by barbaloin preconditioning. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1041-1048. [PMID: 31518384 DOI: 10.1093/abbs/gmz090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
The development of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a significant advancement in our ability to obtain cardiomyocytes in vitro for regenerative therapies and drug discovery. However, hPSC-CMs obtained via existing protocols usually exhibit a markedly immature phenotype, compared with adult cardiomyocytes, thereby limiting their application. Here we report that barbaloin preconditioning dramatically improves the morphology, structure-related cardiac gene expression, calcium handling, and electrophysiological properties of hPSC-CMs, which means that barbaloin may have the potential to induce the maturation of hPSC-CMs, providing a novel strategy to generate more adult-like cardiomyocytes and promoting the application of hPSC-CMs in regenerative medicine, drug development, and disease modeling.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Tongji University, Shanghai 200092, China
| | - Weiyi Zhong
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mohammad Rafi Hamidi
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaojun Zhou
- Department of Cardiology, Nanjing Pukou Central Hospital, Nanjing 211800, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|