1
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Pandamooz S, Safari A, Ghorbani N, Jamhiri I, Zare S, Belém-Filho IJA, Dolati P, Salehi MS. Dimethyl Fumarate Preconditioning can Reinforce the Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells through Trophic Factor Profile Enhancement. Adv Biomed Res 2024; 13:37. [PMID: 39224404 PMCID: PMC11368223 DOI: 10.4103/abr.abr_298_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have confirmed the therapeutic efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in addressing neurologic disorders. To date, several preconditioning strategies have been designed to improve the therapeutic potential of these stem cells. This study was designed to evaluate the preconditioning effect of dimethyl fumarate (DMF) on the expression of main trophic factors in human BM-MSCs. Materials and Methods Initially, the identity of stem cells was confirmed through the evaluation of surface markers and their capacity for osteogenic and adipogenic differentiation using flow cytometry and differentiation assay, respectively. Subsequently, stem cells were subjected to different concentrations of DMF for 72 hours and their viability was defined by MTT assay. Following 72-hour preconditioning period with 10 µM DMF, gene expression was assessed by quantitative RT-PCR. Results Our findings demonstrated that the isolated stem cells expressed cardinal MSC surface markers and exhibited osteogenic and adipogenic differentiation potential. MTT results confirmed that 10 µM DMF was an optimal dose for maintaining cell viability. Preconditioning of stem cells with DMF significantly upregulated the expression of BDNF, NGF, and NT-3. Despite a slight increase in transcript level of GDNF and VEGF after DMF preconditioning, this difference was not statistically significant. Conclusions Our findings suggest that DMF preconditioning can enhance the expression of major neurotrophic factors in human BM-MSCs. Given the curative potential of both BM-MSCs and DMF in various neurological disease models and preconditioning outcomes, their combined use may synergistically enhance their neuroprotective properties.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Ghorbani
- Department of Nursing, College of Nursing, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parisa Dolati
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Chen C, Peng C, Hu Z, Ge L. Effects of bone marrow mesenchymal stromal cells-derived therapies for experimental traumatic brain injury: A meta-analysis. Heliyon 2024; 10:e25050. [PMID: 38322864 PMCID: PMC10844131 DOI: 10.1016/j.heliyon.2024.e25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Bone-marrow-derived mesenchymal stromal (stem) cells [also called MSC(M)] and their extracellular vesicles (EVs) are considered a potentially innovative form of therapy for traumatic brain injury (TBI). Nevertheless, their application to TBI particularly remains preclinical, and the effects of these cells remain unclear and controversial. Therefore, an updated meta-analysis of preclinical studies is necessary to assess the effectiveness of MSC(M) and MSC(M) derived EVs in clinical trials. Methods The following databases were searched (to December 2022): PubMed, Web of Science, and Embase. In this study, we measured functional outcomes based on the modified neurological severity score (mNSS), cognitive outcomes based on the Morris water maze (MWM), and histopathological outcomes based on lesion volume. A random effects meta-analysis was conducted to evaluate the effect of mNSS, MWM, and lesion volume. Results A total of 2163 unique records were identified from our search, with Fifty-five full-text articles satisfying inclusion criteria. A mean score of 5.75 was assigned to the studies' quality scores, ranging from 4 to 7. MSC(M) and MSC(M) derived EVs had an overall positive effect on the mNSS score and MWM with SMDs -2.57 (95 % CI -3.26; -1.88; p < 0.01) and - 2.98 (95 % CI -4.21; -1.70; p < 0.01), respectively. As well, MSC(M) derived EVs were effective in reducing lesion volume by an SMD of - 0.80 (95 % CI -1.20; -0.40; p < 0.01). It was observed that there was significant variation among the studies, but further analyses could not determine the cause of this heterogeneity. Conclusions MSC(M) and MSC(M) derived EVs are promising treatments for TBI in pre-clinical studies, and translation to the clinical domain appears warranted. Besides, large-scale trials in animals and humans are required to support further research due to the limited sample size of MSC(M) derived EVs.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cuiying Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan provincial key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, China
| |
Collapse
|
6
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Li T, Tang Q, Xu J, Ye X, Chen K, Zhong J, Zhu J, Lu S, Zhu T. Apelin-Overexpressing Neural Stem Cells in Conjunction with a Silk Fibroin Nanofiber Scaffold for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2023; 32:539-553. [PMID: 37261998 DOI: 10.1089/scd.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Traumatic brain injury (TBI), especially moderate or severe TBI, is one of the most devastating injuries to the nervous system, as the existing therapies for neurological defect repair have difficulty achieving satisfactory results. Neural stem cells (NSCs) therapy is a potentially effective treatment option, especially after specific genetic modifications and when used in combination with biomimetic biological scaffolds. In this study, tussah silk fibroin (TSF) scaffolds with interconnected nanofibrous structures were fabricated using a top-down method. We constructed the apelin-overexpressing NSCs that were cocultured with a TSF nanofiber scaffold (TSFNS) that simulated the extracellular matrix in vitro. To verify the therapeutic efficacy of engineered NSCs in vivo, we constructed TBI models and randomized the C57BL/6 mice into three groups: a control group, an NSC-ctrl group (transplantation of NSCs integrated on TSFNS), and an NSC-apelin group (transplantation of apelin-overexpressing NSCs integrated on TSFNS). The neurological functions of the model mice were evaluated in stages. Specimens were obtained 24 days after transplantation for immunohistochemistry, immunofluorescence, and western blot experiments, and statistical analysis was performed. The results showed that the combination of the TSFNS and apelin overexpression guided extension and elevated the proliferation and differentiation of NSCs both in vivo and in vitro. Moreover, the transplantation of TSFNS-NSCs-Apelin reduced lesion volume, enhanced angiogenesis, inhibited neuronal apoptosis, reduced blood-brain barrier damage, and mitigated neuroinflammation. In summary, TSFNS-NSC-Apelin therapy could build a microenvironment that is more conducive to neural repair to promote the recovery of injured neurological function.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Jiaxin Xu
- Endoscopy Centre and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangru Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Shijun Lu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| |
Collapse
|
8
|
Chen T, Xia Y, Zhang L, Xu T, Yi Y, Chen J, Liu Z, Yang L, Chen S, Zhou X, Chen X, Wu H, Liu J. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater Today Bio 2023; 19:100606. [PMID: 37063247 PMCID: PMC10102240 DOI: 10.1016/j.mtbio.2023.100606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.
Collapse
Affiliation(s)
- Tiange Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Yan Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Hunan, China
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author. Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Kaifu District, Changsha, 410008, PR China.
| |
Collapse
|
9
|
Huang D, Bao H, Wu J, Zhuge Q, Yang J, Ye S. Overexpression of NT3 P75-2 gene modified bone marrow mesenchymal stem cells supernatant promotes neurological function recovery in ICH rats. Neurosci Lett 2023; 796:137067. [PMID: 36641043 DOI: 10.1016/j.neulet.2023.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Intracerebral hemorrhage (ICH) is an acute cerebrovascular disease with high mortality and long-term disability rates. Stem cell transplantation and neurotrophic factor therapy have shown great potential in ICH. It has been established that mutated NT3 (NT3P75 - 2) can enhance the positive biological functions of NT3 by decreasing its affinity to the P75-2 receptor. The present study aimed to explore whether NT3P75-2 could further improve neurological recovery after ICH. First, we constructed three stable BMSC cell lines (GFP, GFP-NT3 overexpressed and GFP-NT3P75 - 2 overexpressed) by lentivirus infection. Next, rats were injected with fresh supernatants of these three cell lines on days 1 (24 h) and 3 (72 h) post-ICH induction. Behavioral evaluations were conducted to assess the neurological recovery of ICH rats. We further evaluated changes in microglia activation, neuron survival and proliferation of neural stem cells. Compared with the GFP group and the GFP-NT3 group, animals in the GFP-NT3P75 - 2 group exhibited better motor function improvements and milder neuroinflammation response. Meanwhile, overexpression of NT3P75 - 2 significantly decreased neuronal apoptosis and increased number of SOX2 - positive cells. Taken together, our study demonstrated that early administration of NT3P75 - 2 enriched BMMSC supernatants significantly enhanced neuro-functional recovery after ICH by regulating neuroinflammation response, neuronal survival and increasing neural stem cell number, providing a new therapeutic strategy and direction for early treatment of ICH.
Collapse
Affiliation(s)
- Dongdong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Han Bao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jian Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Yu E, Zhang E, Lv X, Yan L, Lin Z, Siaw-Debrah F, Zhang Y, Yang S, Ruan L, Zhuge Q, Ni H. LDC7559 Exerts Neuroprotective Effects by Inhibiting GSDMD-dependent Pyroptosis of Microglia in Mice with Traumatic Brain Injury. J Neurotrauma 2022; 40:742-757. [PMID: 35920115 DOI: 10.1089/neu.2021.0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.
Collapse
Affiliation(s)
- Enxing Yu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Ningbo City First Hospital, Department of Plastic and Reconstructive Surgery, Ningbo, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery,, Wenzhou, Zhejiang, China;
| | - Erjia Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Xinhuang Lv
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Lin Yan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Zhongxiao Lin
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Felix Siaw-Debrah
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Korle Bu Teaching Hospital, Department of Neurosurgery, Korlebu teaching hospital, Accra, Greater Accra, Ghana;
| | - Ying Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Su Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Linhui Ruan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Haoqi Ni
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| |
Collapse
|
12
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of
Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:
The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
13
|
Chen J, Lin X, Yao C, Bingwa LA, Wang H, Lin Z, Jin K, Zhuge Q, Yang S. Transplantation of Roxadustat-preconditioned bone marrow stromal cells improves neurological function recovery through enhancing grafted cell survival in ischemic stroke rats. CNS Neurosci Ther 2022; 28:1519-1531. [PMID: 35695696 PMCID: PMC9437235 DOI: 10.1111/cns.13890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS The therapeutic effect of bone marrow stromal cell (BMSC) transplantation for ischemic stroke is limited by its low survival rate. The purpose of this study was to evaluate whether Roxadustat (FG-4592) pretreatment could promote the survival rate of grafted BMSCs and improve neurological function deficits in ischemia rats. METHODS Oxygen-glucose deprivation (OGD) and permanent middle cerebral artery occlusion (pMCAO) were constructed as stroke models in vitro and in vivo. Flow cytometry analysis and expression of Bax and Bcl-2 were detected to evaluate BMSCs apoptosis. Infarct volume and neurobehavioral score were applied to evaluate functional recovery. Inflammatory cytokine expression, neuronal apoptosis, and microglial M1 polarization were assessed to confirm the enhanced neurological recovery after FG-4592 pretreatment. RESULTS FG-4592 promoted autophagy level to inhibit OGD-induced apoptosis through HIF-1α/BNIP3 pathway. GFP and Ki67 double staining showed an improved survival rate of BMSCs in the FG-4592 group, whereas infarct volume and neurobehavioral score verified its enhanced neurological recovery activity simultaneously. NeuN and Iba-1 fluorescence staining showed improved neural survival and decreased microglial activation, along with decreased IL-1β, IL-6, and TNF-α levels through the TLR-4/NF-kB pathway. CONCLUSIONS FG-4592 pretreated BMSCs improve neurological function recovery after stroke and are likely to be a promising strategy for stroke management.
Collapse
Affiliation(s)
- Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lebohang Anesu Bingwa
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
15
|
Fu C, Zhou Y, Wang L. The Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) on Brain Injury Repair and Synapse Regeneration in Mice Under Different Conditions of Intrauterine Ischemia and Hypoxia Through Wnt Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into a variety of cells and repair damaged cells. We explore whether BMSCs can repair brain damage and synapses regeneration in mice under intrauterine ischemia and hypoxia. Twenty-five pregnant mice were assigned into
control group, 6% hypoxic injury group, 8% hypoxic injury group, 6% treatment group, 8% treatment group followed by analysis of the expression of MBP, MAG, CSPGs, IGF-1, NCAN, COLIV, SynD1G1, GFAP, GSK-3β, and β-actin by RT-PCR and Western blot. Our results showed that
the expression of MBP, MAG, COL IV, SynD1G1, IGF-1 in the treatment group were significantly higher than those in hypoxic injury group with significant differences between the 8% treatment group and 6% treatment group (P < 0.05). In conclusion, BMSCs can repair brain damage and synapse
regeneration in mice under different intrauterine ischemia and hypoxia conditions which might be through Wnt signaling pathway.
Collapse
Affiliation(s)
- Changtao Fu
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Lei Wang
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| |
Collapse
|
16
|
Karimi-Haghighi S, Chavoshinezhad S, Safari A, Razeghian-Jahromi I, Jamhiri I, Khodabandeh Z, Khajeh S, Zare S, Borhani-Haghighi A, Dianatpour M, Pandamooz S, Salehi MS. Preconditioning with secretome of neural crest-derived stem cells enhanced neurotrophic expression in mesenchymal stem cells. Neurosci Lett 2022; 773:136511. [PMID: 35143889 DOI: 10.1016/j.neulet.2022.136511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/01/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.
Collapse
Affiliation(s)
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
18
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
19
|
Chen KH, Shao PL, Li YC, Chiang JY, Sung PH, Chien HW, Shih FY, Lee MS, Chen WF, Yip HK. Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy Effectively Protected the Brain Architecture and Neurological Function in Rat After Acute Traumatic Brain Injury. Cell Transplant 2021; 29:963689720929313. [PMID: 33169616 PMCID: PMC7784577 DOI: 10.1177/0963689720929313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intracranial hemorrhage from stroke and head trauma elicits a cascade of inflammatory and immune reactions detrimental to neurological integrity and function at cellular and molecular levels. This study tested the hypothesis that human umbilical cord–derived mesenchymal stem cell (HUCDMSC) therapy effectively protected the brain integrity and neurological function in rat after acute traumatic brain injury (TBI). Adult male Sprague-Dawley rats (n = 30) were equally divided into group 1 (sham-operated control), group 2 (TBI), and group 3 [TBI + HUCDMSC (1.2 × 106 cells/intravenous injection at 3 h after TBI)] and euthanized by day 28 after TBI procedure. The results of corner test and inclined plane test showed the neurological function was significantly progressively improved from days 3, 7, 14, and 28 in groups 1 and 3 than in group 2, and group 1 than in group 3 (all P < 0.001). By day 28, brain magnetic resonance imaging brain ischemic volume was significantly increased in group 2 than in group 3 (P < 0.001). The protein expressions of apoptosis [mitochondrial-bax positive cells (Bax)/cleaved-caspase3/cleaved-poly(adenosine diphosphate (ADP)-ribose) polymerase], fibrosis (Smad3 positive cells (Smad3)/transforming growth factor-β), oxidative stress (NADPH Oxidase 1 (NOX-1)/NADPH Oxidase 2 (NOX-2)/oxidized-protein/cytochrome b-245 alpha chain (p22phox)), and brain-edema/deoxyribonucleic acid (DNA)–damaged biomarkers (Aquaporin-4/gamma H2A histone family member X ( (γ-H2AX)) displayed an identical pattern to neurological function among the three groups (all P < 0.0001), whereas the protein expressions of angiogenesis biomarkers (vascular endothelial growth factor/stromal cell–derived factor-1α/C-X-C chemokine receptor type 4 (CXCR4)) significantly increased from groups 1 to 3 (all P < 0.0001). The cellular expressions of inflammatory biomarkers (cluster of differentiation 14 (+) cells (CD14+)/glial fibrillary acidic protein positive cells (GFAP+)/ a member of a new family of EGF-TM7 molecules positive cells (F4/80+)) and DNA-damaged parameter (γ-H2AX) exhibited an identical pattern, whereas cellular expressions of neural integrity (hexaribonucleotide Binding Protein-3 positive cells (NeuN+)/nestin+/doublecortin+) exhibited an opposite pattern of neurological function among the three groups (all P < 0.0001). Xenogeneic HUCDMSC therapy was safe and it significantly preserved neurological function and brain architecture in rat after TBI.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Pei-Lin Shao
- Department of Nursing, 63267Asia University, Taichung
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - John Y Chiang
- Department of Computer Science and Engineering, 34874National Sun Yat-sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Hui-Wen Chien
- Department of Nursing, 63267Asia University, Taichung
| | - Fu-Yuan Shih
- Department of Neurosurgery, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Mel S Lee
- Department of Orthopedics, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Wu-Fu Chen
- Department of Neurosurgery, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Fujian, China.,Department of Marine Biotechnology and Resources, 34874National Sun Yat-sen University, Kaohsiung
| | - Hon-Kan Yip
- Department of Nursing, 63267Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, 63328Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine.,Institute for Translational Research in Biomedicine, 63328Kaohsiung Chang Gung Memorial Hospital.,Center for Shockwave Medicine and Tissue Engineering, 63328Kaohsiung Chang Gung Memorial Hospital.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Fujian, China
| |
Collapse
|
20
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Chen X, Wang Y, Jiang S. The Effect of Sirtuin 2 (Sirt2) Overexpressing Bone Marrow Mesenchymal Stem Cells on the Growth of Human Epidermal Growth Factor Receptor 2 (Her-2) Breast Cancer Cells and Its Mechanism. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study investigates the effect of high expression of Sirt2 in MSCs (MSCs-Sirt2) on Her-2 breast cancer cell proliferation. A mouse subcutaneous xenograft tumor model was established and MSCssirt2 analysis was performed on nude mice. TUNEL staining, flow cytometry, western-blot, real-time
PCR and immunohistochemistry were used to detect cancer cell apoptosis. The number of NK cells infiltrated by flow cytometry detected the tumor tissue of tumor-bearing mice, and its killing activity on tumor-bearing mice was detected by isotope labeling and release method. The levels of TNF-α,
IFN-γ, IL-8, IL-6 and IL-10 were detected by ELISA. Caspase-3 level was decreased in the MSCs group (P <0.01) while increased in the MSCs-sirt2 group (P <0.001). However, PCNA expression showed an opposite profile in the Her-2 group and MSCs-sirt2 group compared to
Caspase-3 level (P <0.01). The tumor volume and weight in the MSCs-sirt2 group was significantly reduced (P < 0.01), while increased in the MSCs group significantly (P < 0.05). The number of Ki-67-positive tumor cells in MSCs-sirt2 group was significantly reduced
(P <0.01) and increased in MSCs group (P < 0.001) with oppositive number of TUNEL-positive tumor cells in the MSCs-sirt2 group and MSCs group (P <0.01). IFN-γ level showed an upward trend (P <0.001). The NK cell toxicity of MSCs-Sirt2 group was
significantly higher (P <0.001). MSCs-Sirt2 has an inhibitory effect on Her-2 breast cancer cell growth by enhancing the local inflammatory response of NK cells.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Pharmacy, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Yan Wang
- Department of Cardiothoracic Surgery, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Sunlu Jiang
- Minimally Invasive Interventional Center, Hubei Cancer Hospital, Wuhan, Hubei, 430000, China
| |
Collapse
|
22
|
Huang D, Siaw-Debrah F, Wang H, Ye S, Wang K, Wu K, Zhang Y, Wang H, Yao C, Chen J, Yan L, Zhang CL, Zhuge Q, Yang J. Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice. Aging (Albany NY) 2020; 13:2822-2850. [PMID: 33411679 PMCID: PMC7880331 DOI: 10.18632/aging.202334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs)-based therapy has emerged as a promising novel therapy for Traumatic Brain Injury (TBI). However, the therapeutic quantity of viable implanted BMMSCs necessary to initiate efficacy is still undetermined. Increased oxidative stress following TBI, which leads to the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase signaling pathway, has been implicated in accounting for the diminished graft survival and therapeutic effect. To prove this assertion, we silenced the expression of NADPH subunits (p22-phox, p47-phox, and p67-phox) and small GTPase Rac1 in BMMSCs using shRNA. Our results showed that silencing these proteins significantly reduced oxidative stress and cell death/apoptosis, and promoted implanted BMMSCs proliferation after TBI. The most significant result was however seen with Rac1 silencing, which demonstrated decreased expression of apoptotic proteins, enhanced in vitro survival ratio, reduction in TBI lesional volume and significant improvement in neurological function post shRac1-BMMSCs transplantation. Additionally, two RNA-seq hub genes (VEGFA and MMP-2) were identified to play critical roles in shRac1-mediated cell survival. In summary, we propose that knockdown of Rac1 gene could significantly boost cell survival and promote the recovery of neurological functions after BMMSCs transplantation in TBI mice.
Collapse
Affiliation(s)
- Dongdong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Yan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
23
|
Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling. Neurosci Bull 2020; 37:242-254. [PMID: 33111257 DOI: 10.1007/s12264-020-00601-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.
Collapse
|
24
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|