1
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Fang X, Liu C, Wei K, Shu Z, Zou Y, Zhang Z, Ding Q, Jing S, Li W, Wang T, Li H, Wu H, Liu C, Ma T. Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2. Commun Biol 2024; 7:1156. [PMID: 39284881 PMCID: PMC11405519 DOI: 10.1038/s42003-024-06866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Electromagnetic fields (EMFs) have emerged as an effective treatment for osteoporosis. However, the specific mechanism underlying their therapeutic efficacy remains controversial. Herein, we confirm the pro-osteogenic effects of 15 Hz and 0.4-1 mT low-frequency sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs). Subsequent miRNA sequencing reveal that miR-34b-5p is downregulated in both the 0.4 mT and 1 mT SEMFs-stimulated groups. To clarify the role of miR-34b-5p in osteogenesis, BMSCs are transfected separately with miR-34b-5p mimic and inhibitor. The results indicate that miR-34b-5p mimic transfection suppress osteogenic differentiation, whereas inhibition of miR-34b-5p promote osteogenic differentiation of BMSCs. In vivo assessments using microcomputed tomography, H&E staining, and Masson staining show that miR-34b-5p inhibitor injections alleviate bone mass loss and trabecular microstructure deterioration in ovariectomy (OVX) rats. Further validation demonstrates that miR-34b-5p exerts its effects by regulating STAC2 expression. Modulating the miR-34b-5p/STAC2 axis attenuate the pro-osteogenic effects of low-frequency SEMFs on BMSCs. These studies indicate that the pro-osteogenic effect of SEMFs is partly due to the regulation of the miR-34b-5p/STAC2 pathway, which provides a potential therapeutic candidate for osteoporosis.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ding
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoze Jing
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Weigang Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Departments of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Kirmanidou Y, Chatzinikolaidou M, Michalakis K, Tsouknidas A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. BIOMATERIALS ADVANCES 2024; 162:213902. [PMID: 38823255 DOI: 10.1016/j.bioadv.2024.213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The craniofacial region is characterized by its intricate bony anatomy and exposure to heightened functional forces presenting a unique challenge for reconstruction. Additive manufacturing has revolutionized the creation of customized scaffolds with interconnected pores and biomimetic microarchitecture, offering precise adaptation to various craniofacial defects. Within this domain, medical-grade poly(ε-caprolactone) (PCL) has been extensively used for the fabrication of 3D printed scaffolds, specifically tailored for bone regeneration. Its adoption for load-bearing applications was driven mainly by its mechanical properties, adjustable biodegradation rates, and high biocompatibility. The present review aims to consolidating current insights into the clinical translation of PCL-based constructs designed for bone regeneration. It encompasses recent advances in enhancing the mechanical properties and augmenting biodegradation rates of PCL and PCL-based composite scaffolds. Moreover, it delves into various strategies improving cell proliferation and the osteogenic potential of PCL-based materials. These strategies provide insight into the refinement of scaffold microarchitecture, composition, and surface treatments or coatings, that include certain bioactive molecules such as growth factors, proteins, and ceramic nanoparticles. The review critically examines published data on the clinical applications of PCL scaffolds in both extraoral and intraoral craniofacial reconstructions. These applications include cranioplasty, nasal and orbital floor reconstruction, maxillofacial reconstruction, and intraoral bone regeneration. Patient demographics, surgical procedures, follow-up periods, complications and failures are thoroughly discussed. Although results from extraoral applications in the craniofacial region are encouraging, intraoral applications present a high frequency of complications and related failures. Moving forward, future studies should prioritize refining the clinical performance, particularly in the domain of intraoral applications, and providing comprehensive data on the long-term outcomes of PCL-based scaffolds in bone regeneration. Future perspective and limitations regarding the transition of such constructs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Y Kirmanidou
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece
| | - M Chatzinikolaidou
- Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece; Foundation for Research and Technology Hellas (FO.R.T.H), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| | - K Michalakis
- Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, USA
| | - A Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, University Campus ZEP, 50100 Kozani, Greece; Laboratory of Biomechanics, Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston MA-02111, USA.
| |
Collapse
|
4
|
Hosseini S, Parsaei H, Moosavifar M, Tavakoli N, Ahadi R, Roshanbinfar K. Static magnetic field enhances the bone remodelling capacity of human demineralized bone matrix in a rat animal model of cranial bone defects. J Mater Chem B 2024; 12:3774-3785. [PMID: 38535706 DOI: 10.1039/d3tb02299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.
Collapse
Affiliation(s)
- SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, 3513138111, Semnan, Iran
| | - MirJavad Moosavifar
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
- Institut für experimentelle molekulare Bildgebung, RWTH Aachen University, Aachen 52074, Germany
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, 1415564583, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany.
| |
Collapse
|
5
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
6
|
Niu Y, Chen L, Wu T. Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. Int J Mol Sci 2023; 24:12492. [PMID: 37569875 PMCID: PMC10419613 DOI: 10.3390/ijms241512492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The natural healing process of bone is impaired in the presence of tumors, trauma, or inflammation, necessitating external assistance for bone regeneration. The limitations of autologous/allogeneic bone grafting are still being discovered as research progresses. Bone tissue engineering (BTE) is now a crucial component of treating bone injuries and actively works to promote vascularization, a crucial stage in bone repair. A biomaterial with hydroxyapatite (HA), which resembles the mineral makeup of invertebrate bones and teeth, has demonstrated high osteoconductivity, bioactivity, and biocompatibility. However, due to its brittleness and porosity, which restrict its application, scientists have been prompted to explore ways to improve its properties by mixing it with other materials, modifying its structural composition, improving fabrication techniques and growth factor loading, and co-cultivating bone regrowth cells to stimulate vascularization. This review scrutinizes the latest five-year research on HA composite studies aimed at amplifying vascularization in bone regeneration.
Collapse
Affiliation(s)
- Yifan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tianfu Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
7
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Kido HW, Gabbai-Armelin PR, Magri A, Fernandes KR, Cruz MA, Santana AF, Caliari HM, Parisi JR, Avanzi IR, Daguano J, Granito RN, Fortulan CA, Rennó A. Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats. J Biomater Appl 2023; 37:1632-1644. [PMID: 36916869 DOI: 10.1177/08853282231163752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.
Collapse
Affiliation(s)
- H W Kido
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Amp Magri
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Guaxupé, Brazil
| | - K R Fernandes
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - M A Cruz
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F Santana
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - H M Caliari
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - I R Avanzi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Jkmb Daguano
- Center for Engineering, Modeling and Applied Social Sciences, 74362Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - R N Granito
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, 28133University of São Paulo (USP) São Carlos, São Carlos, Brazil
| | - Acm Rennó
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
9
|
Zhao H, Liu C, Liu Y, Ding Q, Wang T, Li H, Wu H, Ma T. Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Res Ther 2023; 14:7. [PMID: 36631880 PMCID: PMC9835389 DOI: 10.1186/s13287-022-03217-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Bone tissue engineering (BTE) emerged as one of the exceptional means for bone defects owing to it providing mechanical supports to guide bone tissue regeneration. Great advances have been made to facilitate the success of BTE in regenerating bone within defects. The use of externally applied fields has been regarded as an alternative strategy for BTE. Electromagnetic fields (EMFs), known as a simple and non-invasive therapy, can remotely provide electric and magnetic stimulation to cells and biomaterials, thus applying EMFs to assist BTE would be a promising strategy for bone regeneration. When combined with BTE, EMFs improve cell adhesion to the material surface by promoting protein adsorption. Additionally, EMFs have positive effects on mesenchymal stem cells and show capabilities of pro-angiogenesis and macrophage polarization manipulation. These advantages of EMFs indicate that it is perfectly suitable for representing the adjuvant treatment of BTE. We also summarize studies concerning combinations of EMFs and diverse biomaterial types. The strategy of combining EMFs and BTE receives encouraging outcomes and holds a promising future for effectively treating bone defects.
Collapse
Affiliation(s)
- Hongqi Zhao
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Chaoxu Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yang Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Qing Ding
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Tianqi Wang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hao Li
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
11
|
Li W, Li T, Tang Z, Qi X, Zhou Y, Tang X, Xu W, Xiong H. Taohong Siwu Decoction promotes the process of fracture healing by activating the VEGF-FAK signal pathway and systemically regulating the gut microbiota. J Appl Microbiol 2022; 133:1363-1377. [PMID: 35475538 DOI: 10.1111/jam.15598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed to explore the effect of Taohong Siwu Decoction (THSWD) on Bone marrow mesenchymal stem cells (BMSCs) at the cellular level and the possible mechanism of systemic regulation of gut microbiota on fracture recovery. METHODS AND RESULTS Cell Counting Kit-8 (CCK-8) experiments show that THSWD effectively promotes the proliferation of BMSCs. Transwell and wound healing assays show that THSWD effectively promotes the invasion and migration of BMSCs. Alizarin red staining showed that the THSWD model enhanced the osteogenic differentiation of BMSCs. Moreover, the effect of THSWD on BMSCs is time- and concentration-dependent. RT-qPCR and Western blot results showed that THSWD treatment up-regulated the expression of vascular endothelial growth factor (VEGF) and focal adhesion kinase (FAK) at mRNA and protein levels, respectively. Hematoxylin-eosin and crocin O-quick green staining showed that rats with right femoral shaft fractures, after 14 days of THSWD treatment, the area of callus and cartilage regeneration at the fracture site increased significantly. Gut microbiota was changed in fractured rats, such as the abundance of Bacteroidetes and Firmicutes was increased. THSWD showed positive regulation of both to a certain extent. CONCLUSION THSWD up-regulates VEGF and activates the FAK signaling pathway to enhance the development and differentiation of BMSCs, and systematically regulates the gut microbiota to promote fracture healing. SIGNIFICANCE AND IMPACT OF STUDY This study provides new insights on the cellular and systemic level to understand the mechanism of THSWD in the treatment of fractures.
Collapse
Affiliation(s)
- Wangyang Li
- Hunan University of Chinese Medicine, Changsha, Hunan
| | - Tiao Li
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Zhi Tang
- Xiangtan Chinese Medicine hospital, Xiangtan, Hunan
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan
| | - Youliang Zhou
- Department of Emergency First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan
| | - Xiaolu Tang
- Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan
| | - Weijie Xu
- Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan
| |
Collapse
|
12
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
13
|
Liu H, Qiu L, Liu H, Li F, Fan Y, Meng L, Sun X, Zhan C, Luo R, Wang C, Zhang J, Li R. Effects of Fiber Cross-Angle Structures on the Mechanical Property of 3D Printed Scaffolds and Performance of Seeded MC3T3-E1 Cells. ACS OMEGA 2021; 6:33665-33675. [PMID: 34926914 PMCID: PMC8675015 DOI: 10.1021/acsomega.1c04672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/15/2021] [Indexed: 05/15/2023]
Abstract
The three-dimensional (3D) printing technology combined with bone tissue engineering has become one of the major methods for mandibular reconstruction. However, the key factor retarding mandible reconstruction is the barrier of understanding and achieving the complex 3D gridwork formed by the trabeculae. This study innovatively constructed a low-temperature 3D printing silk fibroin/collagen/hydroxyapatite (SF/COL/HA) composite scaffold with a stable structure and remarkable biocompatibility. We designed three kinds of six-layer scaffolds with mixed fiber cross-angle structures (FCAS) of [0°/90°/0°/90°/0°/90°], [0°/45°/90°/135°/180°/225°] and [0°/30°/60°/90°/120°/150°]. Material properties of these scaffolds such as porosity, water absorption rate, X-ray diffraction, Fourier transform infrared spectroscopy, and compression performance were detected. Then, the MC3T3-E1 cells were seeded on these scaffolds and the adhesion, proliferation, and differentiation were investigated. To be more convincing, the same experiments were performed on another polycaprolactone/hydroxyapatite scaffold. The results suggested that the changes of FCAS affected the mechanical properties of 3D printed scaffolds and performance of seeded cells. Besides, the 90° FCAS significantly enhanced the compressive modulus in two groups and were more conducive to the cell proliferation and osteogenesis, which provided evidence for exploring the influence of FCAS on the properties of scaffolds and the application of two composite scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Han Liu
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Lin Qiu
- Central
Laboratory, Peking University School and
Hospital of Stomatology, Beijing 100081, China
| | - Hao Liu
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Fengji Li
- Shenzhen
Luohu Hospital of Traditional Chinese Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518001, China
| | - Yaru Fan
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Tianjin
Medical University, Tianjin 300203, China
| | - Lulu Meng
- Tianjin
University of Technology, Tianjin 300384, China
| | - Xiaoqian Sun
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Chaojun Zhan
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Rui Luo
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Chao Wang
- Tianjin
Stomatological Hospital, Tianjin 300041, China
| | - Jun Zhang
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ruixin Li
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| |
Collapse
|
14
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
16
|
Drzewiecka EM, Kozlowska W, Paukszto L, Zmijewska A, Wydorski PJ, Jastrzebski JP, Franczak A. Effect of the Electromagnetic Field (EMF) Radiation on Transcriptomic Profile of Pig Myometrium during the Peri-Implantation Period-An In Vitro Study. Int J Mol Sci 2021; 22:7322. [PMID: 34298942 PMCID: PMC8305477 DOI: 10.3390/ijms22147322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
The electromagnetic field (EMF) affects the physiological processes in mammals, but the molecular background of the observed alterations remains not well established. In this study was tested the effect of short duration (2 h) of the EMF treatment (50 Hz, 8 mT) on global transcriptomic alterations in the myometrium of pigs during the peri-implantation period using next-generation sequencing. As a result, the EMF treatment affected the expression of 215 transcript active regions (TARs), and among them, the assigned gene protein-coding biotype possessed 90 ones (differentially expressed genes, DEGs), categorized mostly to gene ontology terms connected with defense and immune responses, and secretion and export. Evaluated DEGs enrich the KEGG TNF signaling pathway, and regulation of IFNA signaling and interferon-alpha/beta signaling REACTOME pathways. There were evaluated 12 differentially expressed long non-coding RNAs (DE-lnc-RNAs) and 182 predicted single nucleotide variants (SNVs) substitutions within RNA editing sites. In conclusion, the EMF treatment in the myometrium collected during the peri-implantation period affects the expression of genes involved in defense and immune responses. The study also gives new insight into the mechanisms of the EMF action in the regulation of the transcriptomic profile through lnc-RNAs and SNVs.
Collapse
Affiliation(s)
- Ewa Monika Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Wiktoria Kozlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (L.P.); (J.P.J.)
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Pawel Jozef Wydorski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (L.P.); (J.P.J.)
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| |
Collapse
|
17
|
Li W, Liu W, Wang W, Wang J, Ma T, Chen J, Wu H, Liu C. Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2021; 12:234. [PMID: 33849651 PMCID: PMC8042357 DOI: 10.1186/s13287-021-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyuan Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Senatov F, Maksimkin A, Chubrik A, Kolesnikov E, Orlova P, Krivozubov M, Nikitin K, Gromov A, Karyagina A. Osseointegration evaluation of UHMWPE and PEEK-based scaffolds with BMP-2 using model of critical-size cranial defect in mice and push-out test. J Mech Behav Biomed Mater 2021; 119:104477. [PMID: 33798934 DOI: 10.1016/j.jmbbm.2021.104477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
It the present study the push-out mechanical test was adopted for mouse model of implantation in critical-size cranial defects to evaluate the effectiveness of implant-skull fusion. As implants, disks of porous ultra-high molecular weight polyethylene (UHMWPE) and polyetheretherketone (PEEK) with hydroxylapatite (HA) with and without loading of recombinant bone morphogenetic protein-2 (BMP-2) were used. Implantation results were evaluated using histology and micro-computed tomography (micro-CT). In the case of both UHMWPE/HA and PEEK/HA, BMP-2 loading resulted in a significant increase in the amount of bone tissue in the implantation area, especially at the edges of the defect, and an increase in the value of BV/TV (bone volume/tissue volume) during micro-CT. There was a high correlation of BV/TV values with the maximum load and elastic modulus measured during the puch-out test. The maximum load values showed good convergence within the groups and are comparable to the maximum load values obtained by other authors in the rat model of implantation in critical-size cranial defects. An adapted push-out test can be used to evaluate the quality of osseointegration of the implanted materials.
Collapse
Affiliation(s)
- F Senatov
- National University of Science and Technology "MISIS", 119049, Leninskiy pr. 4, Moscow, Russia; N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia.
| | - A Maksimkin
- National University of Science and Technology "MISIS", 119049, Leninskiy pr. 4, Moscow, Russia
| | - A Chubrik
- National University of Science and Technology "MISIS", 119049, Leninskiy pr. 4, Moscow, Russia
| | - E Kolesnikov
- National University of Science and Technology "MISIS", 119049, Leninskiy pr. 4, Moscow, Russia
| | - P Orlova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia
| | - M Krivozubov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia
| | - K Nikitin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia
| | - A Gromov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia
| | - A Karyagina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; All-Russia Research Institute of Agricultural Biotechnology, 127550, Timiryazevskaya Str. 42, Moscow, Russia
| |
Collapse
|
19
|
Li W, Huang C, Ma T, Wang J, Liu W, Yan J, Sheng G, Zhang R, Wu H, Liu C. Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion. Stem Cell Res Ther 2021; 12:143. [PMID: 33597006 PMCID: PMC7890873 DOI: 10.1186/s13287-021-02207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Background Intervertebral fusion is the most common surgery to treat lumbar degenerative disease (LDD). And the graft material used in the operation is derived from the iliac crest to promote fusion. However, autografts possess the fatal disadvantage of lack of source. Therefore, economical and practical bone substitutes are urgently needed to be developed. Sinusoidal electromagnetic fields (EMF) combined with tissue engineering techniques may be an appropriate way to promote intervertebral fusion. Methods In this research, porous scaffolds made of polycaprolactone (PCL) and nano-hydroxyapatite (nHA) were used as cell carriers. Then, the scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were treated with sinusoidal electromagnetic field and the osteogenic capability of BMSCs was tested later. In addition, an intervertebral disc of the tail vertebra of the rat was removed to construct a spinal intervertebral fusion model with a cell-scaffold implanted. The intervertebral fusion was observed and analyzed by X-ray, micro-CT, and histological methods. Results BMSCs stimulated by EMF possess splendid osteogenic capability under an osteogenic medium (OM) in vitro. And the conditioned medium of BMSCs treated with EMF can further promote osteogenic differentiation of the primitive BMSCs. Mechanistically, EMF regulates BMSCs via BMP/Smad and mitogen-activated protein kinase (MAPK)-associated p38 signaling pathways. In vivo experiments revealed that the scaffold loaded with BMSCs stimulated by EMF accelerated intervertebral fusion successfully. Conclusion In summary, EMF accelerated intervertebral fusion by improving the osteogenic capacity of BMSCs seeded on scaffolds and might boost the paracrine function of BMSCs to promote osteogenic differentiation of the homing BMSCs at the injured site. EMF combined with tissue engineering techniques may become a new clinical treatment for LDD.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chunwei Huang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 2020; 169:414-427. [PMID: 33352152 DOI: 10.1016/j.ijbiomac.2020.12.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
The metamorphosis of biodegradable polymers in biomedical applications is an auspicious myriad of indagation. The utmost challenge in clinical conditions includes trauma, organs failure, soft and hard tissues, infection, cancer and inflammation, congenital disorders which are still not medicated efficiently. To overcome this bone of contention, proliferation in the concatenation of biodegradable materials for clinical applications has emerged as a silver bullet owing to eco-friendly, nontoxicity, exorbitant mechanical properties, cost efficiency, and degradability. Several bioimplants are designed and fabricated in a way to reabsorb or degrade inside the body after performing the specific function rather than eliminating the bioimplants. The objective of this comprehensive is to unfurl the anecdote of emerging biological polymers derived implants including silk, lignin, soy, collagen, gelatin, chitosan, alginate, starch, etc. by explicating the selection, fabrication, properties, and applications. Into the bargain, emphasis on the significant characteristics of current discernment and purview of nanotechnology integrated biopolymeric implants has also been expounded. This robust contrivance shed light on recent inclinations and evolution in tissue regeneration and targeting organs followed by precedency and fly in the ointment concerning biodegradable implants evolved by employing fringe benefits provided by 3D printing technology for building tissues or organs construct for implantation.
Collapse
Affiliation(s)
- Bhasha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India.
| | - Shreya Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| |
Collapse
|