1
|
Tao Y, Xue T, Li X, Guo R, Wang Y, Xu H, Hu K, Dong X, Wang D, Ren J, Guan Y, Lu J. Comparative analysis of immunological changes following realgar and arsenic trioxide treatments in a murine model of myelodysplastic syndrome. Immunopharmacol Immunotoxicol 2024; 46:408-416. [PMID: 38816179 DOI: 10.1080/08923973.2024.2344158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a prevalent hematological neoplastic disorder in clinics and its immunopathogenesis has garnered growing interest. Oral and intravenous arsenic agents have long been used to treat hematological malignancies. The main component of oral arsenic is realgar (arsenic disulfide), while arsenic trioxide is the main component of intravenous arsenic. METHODS This study aimed to assess the effects of ATO and Realgar on the enhancement of peripheral blood, drug safety, and T cell immune status in the NUP98-HOXD13 (NHD13) mice model of MDS, specifically in the peripheral blood, spleen, and liver. RESULTS The study findings indicate that realgar and arsenic trioxide (ATO) can improve peripheral hemogram in mice, whereas realgar promotes higher peripheral blood cell production than ATO. Furthermore, the clinical administration method and dose did not cause significant toxicity or side effects and thus can be considered safe. Coexistence and interconversion of hyperimmune function and immunosuppression in mice were also observed in this study. In addition, there were interactions between immune cells in the peripheral blood, spleen, and liver to regulate the immune balance of the body and activate immunity via T-cell activation. CONCLUSION In summary, oral and intravenous arsenic agents are beneficial in improving peripheral hemogram and immunity in mice.
Collapse
Affiliation(s)
- Yuchen Tao
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Xue
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Runjie Guo
- Innovation Research Institute of Traditional Chinese Medicine, Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlu Wang
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kexin Hu
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojie Dong
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongqin Wang
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Ren
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Guan
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Lu
- Department of Haematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Feng Z, Liao M, Guo X, Li L, Zhang L. Effects of immune cells in mediating the relationship between gut microbiota and myelodysplastic syndrome: a bidirectional two-sample, two-step Mendelian randomization study. Discov Oncol 2024; 15:199. [PMID: 38819469 PMCID: PMC11143100 DOI: 10.1007/s12672-024-01061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The definitive establishment of a causal relationship between gut microbiota and myelodysplastic syndrome (MDS) has not been achieved. Furthermore, the involvement of immune cells in mediating the connection between gut microbiota and MDS is presently unclear. METHODS To elucidate the bidirectional correlation between gut microbiota and MDS, as well as to investigate the mediating role of immune cells, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Summary statistics were obtained from genome-wide association studies (GWAS), including MDS (456,348 individuals), gut microbiota (18,340 individuals), and 731 immune cells signatures (3757 individuals). RESULTS Genetically predicted eight gut microbiota traits were significantly associated with MDS risk, but not vice versa. Through biological annotation of host-microbiome shared genes, we found that immune regulation may mediate the impact of gut microbiota on MDS. Subsequently, twenty-three immunophenotypes that exhibited significant associations with MDS risk and five of these immunophenotypes were under the causal influence of gut microbiota. Importantly, the causal effects of gut microbiota on MDS were significantly mediated by five immunophenotypes, including CD4 +T cell %leukocyte, CD127 on CD45RA - CD4 not regulatory T cell, CD45 on CD33 + HLA DR + WHR, CD33 on basophil, and Monocyte AC. CONCLUSIONS Gut microbiota was causally associated with MDS risk, and five specific immunophenotypes served as potential causal mediators of the effect of gut microbiota on MDS. Understanding the causality among gut microbiota, immune cells and MDS is critical in identifying potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuege Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Cao M, Peng B, Xu W, Chen P, Li H, Cheng Y, Chen H, Ye L, Xie J, Wang H, Ren L, Xiong L, Zhu J, Xu X, Geng L, Gong S. The Mechanism of miR-155/miR-15b Axis Contributed to Apoptosis of CD34+ Cells by Upregulation of PD-L1 in Myelodysplastic Syndromes. Mediterr J Hematol Infect Dis 2023; 15:e2023040. [PMID: 37435035 PMCID: PMC10332351 DOI: 10.4084/mjhid.2023.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal diseases that are characterized by ineffective bone marrow hematopoiesis. Since studies have confirmed the significance of miRNAs in ineffective hematopoiesis in MDS, the current report elucidated the mechanism mediated by miR-155-5p. The bone marrow of MDS patients was collected to detect miR-155-5p and to analyze the correlation between miR-155-5p and clinicopathological variables. Isolated bone marrow CD34+ cells were transfected with lentiviral plasmids that interfere with miR-155-5p, followed by apoptosis analysis. Finally, miR-155-5p-targeted regulation of RAC1 expression was identified, as well as the interaction between RAC1 and CREB, the co-localization of RAC1 and CREB, and the binding of CREB to miR-15b. As measured, miR-155-5p was upregulated in the bone marrow of MDS patients. Further cell experiments validated that miR-155-5p promoted CD34+ cell apoptosis. miR-155-5p could reduce the transcriptional activity of miR-15b by inhibiting RAC1, dissociating the interaction between RAC1 and CREB, and inhibiting the activation of CREB. Upregulating RAC1, CREB, or miR-15b could reduce miR-155-5p-mediated apoptosis promotion on CD34+ cells. Additionally, miR-155-5p could force PD-L1 expression, and this effect was impaired by elevating RAC1, CREB, or miR-15b. In conclusion, miR-155-5p mediates PD-L1-mediated apoptosis of CD34+ cells in MDS by RAC1/CREB/miR-15b axis, thereby inhibiting bone marrow hematopoiesis.
Collapse
Affiliation(s)
- MeiWan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - BaoLing Peng
- Center for child health and mental health, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, China
| | - WanFu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - PeiYu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HuiWen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiPing Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HongLi Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiYa Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - JingNan Zhu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - XiangYe Xu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LanLan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - SiTang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| |
Collapse
|
4
|
Uckun FM, Watts J. CD123-Directed Bispecific Antibodies for Targeting MDS Clones and Immunosuppressive Myeloid-Derived Suppressor Cells (MDSC) in High-Risk Adult MDS Patients. FRONTIERS IN AGING 2021; 2:757276. [PMID: 35822053 PMCID: PMC9261311 DOI: 10.3389/fragi.2021.757276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
There is an urgent need to identify effective strategies to prevent leukemic transformation and induce sustained deep remissions in adult high-risk myelodysplastic syndrome (MDS) patients. This article discusses the clinical impact potential of bispecific antibodies (BiAB) capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC) as a new class of anti-MDS drug candidates. T-cell engaging BiAB targeting the CD123 antigen may help delay disease progression in high-risk adult MDS and potentially reduce the risk of transformation to secondary AML.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Aptevo Therapeutics, Seattle, WA, United States
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Justin Watts
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, United States
| |
Collapse
|
5
|
Manckoundia P, Konaté A, Hacquin A, Nuss V, Mihai AM, Vovelle J, Dipanda M, Putot S, Barben J, Putot A. Iron in the General Population and Specificities in Older Adults: Metabolism, Causes and Consequences of Decrease or Overload, and Biological Assessment. Clin Interv Aging 2020; 15:1927-1938. [PMID: 33116447 PMCID: PMC7548223 DOI: 10.2147/cia.s269379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Iron is involved in many types of metabolism, including oxygen transport in hemoglobin. Iron deficiency (ID), ie a decrease in circulating iron, can have severe consequences. We provide an update on iron metabolism and ID, highlighting the particularities in older adults (OAs). There are three iron compartments in the human body: 1) the functional compartment, which consists of heme proteins including hemoglobin, myoglobin and respiratory enzymes; 2) iron reserves (IR), which consist mainly of liver stocks and are stored as ferritin; and 3) transferrin. There are two types of ID. Absolute ID is characterized by a decrease in IR. Its main pathophysiological mechanism is bleeding, which is often digestive and can be due to neoplasia, frequent in OAs. Biological assessment shows low serum ferritin and transferrin saturation (TS) levels. Furthermore, hypochromic microcytic anemia is frequent, and the serum-soluble transferrin receptor (sTfR) level is high. Functional ID, in which IR are high or normal, is due to inflammation, which is also frequent in OAs, particularly in its chronic form. Biological assessments show high serum ferritin, normal or low TS, and normal sTfR levels. Moreover, C-reactive protein is elevated, and there is moderate non-regenerative non-macrocytic anemia. The main characteristics of iron metabolism anomalies in the elderly are the high frequency of ID (20% of ID with anemia in adults ≥85 years) and the severity of its consequences, which include cognitive impairment in case of ID or iron overload and decrease of physical activity in case of ID. In conclusion, causes of ID are frequently intertwined in OAs as a result of the polymorbidity that characterizes them. ID can have dramatic consequences, especially in frail OAs. Thus, measuring the appropriate biological markers prevents errors in the positive diagnosis of ID type, clarifies etiology, and informs treatment-related decision-making.
Collapse
Affiliation(s)
- Patrick Manckoundia
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Amadou Konaté
- Unit of Diagnosis and Rapid Orientation (DIAGORA), Internal Medicine Department, Hospital of Saint-Eloi, University Hospital of Montpellier, Montpellier, France
| | - Arthur Hacquin
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Valentine Nuss
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Anca-Maria Mihai
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Jérémie Vovelle
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Mélanie Dipanda
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Sophie Putot
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Jérémy Barben
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| | - Alain Putot
- Pôle Personnes Âgées”, Hospital of Champmaillot, University Hospital of Dijon Burgundy, Dijon, France
| |
Collapse
|