1
|
Derman ID, Rivera T, Garriga Cerda L, Singh YP, Saini S, Abaci HE, Ozbolat IT. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2025; 7:012009. [PMID: 39569402 PMCID: PMC11574952 DOI: 10.1088/2631-7990/ad878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
| | - Laura Garriga Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Shweta Saini
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
- Materials Research Institute, Penn State University, University Park, PA, United States of America
- Cancer Institute, Penn State University, University Park, PA, United States of America
- Neurosurgery Department, Penn State University, University Park, PA, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
3
|
Wu J, Yu F, Shao M, Zhang T, Lu W, Chen X, Wang Y, Guo Y. Electrospun Nanofiber Scaffold for Skin Tissue Engineering: A Review. ACS APPLIED BIO MATERIALS 2024; 7:3556-3567. [PMID: 38777621 DOI: 10.1021/acsabm.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Skin tissue engineering (STE) is widely regarded as an effective approach for skin regeneration. Several synthetic biomaterials utilized for STE have demonstrated favorable fibrillar characteristics, facilitating the regeneration of skin tissue at the site of injury, yet they have exhibited a lack of in situ degradation. Various types of skin regenerative materials, such as hydrogels, nanofiber scaffolds, and 3D-printing composite scaffolds, have recently emerged for use in STE. Electrospun nanofiber scaffolds possess distinct advantages, such as their wide availability, similarity to natural structures, and notable tissue regenerative capabilities, which have garnered the attention of researchers. Hence, electrospun nanofiber scaffolds may serve as innovative biological materials possessing the necessary characteristics and potential for use in tissue engineering. Recent research has demonstrated the potential of electrospun nanofiber scaffolds to facilitate regeneration of skin tissues. Nevertheless, there is a need to enhance the rapid degradation and limited mechanical properties of electrospun nanofiber scaffolds in order to strengthen their effectiveness in soft tissue engineering applications in clinical settings. This Review centers on advanced research into electrospun nanofiber scaffolds, encompassing preparation methods, materials, fundamental research, and preclinical applications in the field of science, technology, and engineering. The existing challenges and prospects of electrospun nanofiber scaffolds in STE are also addressed.
Collapse
Affiliation(s)
- Jingwen Wu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Fenglin Yu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weipeng Lu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Xin Chen
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yihu Wang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Li J, Ding J, Wu H, Lu C, Wu J, Luo Q. Tat-CIRP Peptide Facilitates Frozen Wound Healing by Ameliorating Inflammation and Promoting Angiogenesis. J Inflamm Res 2024; 17:2205-2215. [PMID: 38623470 PMCID: PMC11017987 DOI: 10.2147/jir.s450288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Background Frostbite is a chemia resulting from cold-induced skin damage. The process of frostbite is often accompanied by inflammation, and the therapeutic strategies focusing on anti-inflammation are the main direction to data. Tat-CIRP is a 15 amino acid peptide containing HIV protein and cold-inducible RNA-binding protein (CIRP), which is believed to compete with endogenous CIRP for myeloid differentiation 2 (MD2) binding. This study aims to investigate the efficacy of Tat-CIRP in the treatment of frostbite. Methods A mouse model of frostbite was established, and on the first day after frostbite occurrence, Tat-CIRP peptide was administered intravenously via the tail with a dosage interval of one day for a total of three doses. Frozen mouse skin sections were subjected to histological analysis, including hematoxylin-eosin (HE) staining, Masson staining, and immunohistochemical examination. Western blotting was performed to detect the expression level of Ki-67 in mouse skin tissue. Results One day after frostbite, mice exhibited skin swelling and a solid appearance. From day 1 to 5 after frostbite, MD2 expression was significantly upregulated, while CIRP expression was downregulated. Compared to the frostbite group, mice treated with Tat-CIRP showed accelerated frostbite recovery, reduced levels of inflammatory factors and MD2. Furthermore, the expression of cell proliferation-associated protein Ki-67 and angiogenesis-related protein CD31 was upregulated. Conclusion Tat-CIRP promotes frozen wound healing via inhibiting inflammation and promoting angiogenesis in frostbitten mice.
Collapse
Affiliation(s)
- Jiayan Li
- Department of Hypoxic Biomedicine, Institute of Special Environmental Medicine and Coinnovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People’s Republic of China
| | - Jie Ding
- Department of Hypoxic Biomedicine, Institute of Special Environmental Medicine and Coinnovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People’s Republic of China
| | - Haoyang Wu
- Department of Hypoxic Biomedicine, Institute of Special Environmental Medicine and Coinnovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People’s Republic of China
| | - Chenyan Lu
- Department of Hypoxic Biomedicine, Institute of Special Environmental Medicine and Coinnovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People’s Republic of China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Qianqian Luo
- Department of Hypoxic Biomedicine, Institute of Special Environmental Medicine and Coinnovation Center of Neuroregeneration, Nantong University, Nantong, 226019, People’s Republic of China
| |
Collapse
|
5
|
Wan XX, Hu XM, Xiong K. Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells. World J Stem Cells 2024; 16:58-63. [PMID: 38455107 PMCID: PMC10915953 DOI: 10.4252/wjsc.v16.i2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we offer our perspective on the groundbreaking study entitled "Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells", recently published in World Journal of Stem Cells. Despite over three decades of research on the clinical application of mesenchymal stem cells (MSCs), only a few therapeutic products have made it to clinical use, due to multiple preclinical and clinical challenges yet to be addressed. The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics, which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs. As we delve deeper into the intricacies of pretreatment methodologies, we anticipate a transformative shift in the landscape of MSC-based therapies, ultimately contributing to improved patient outcomes and advancing the field as a whole.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
6
|
Zhang Y, Cui J, Cang Z, Pei J, Zhang X, Song B, Fan X, Ma X, Li Y. Hair follicle stem cells promote epidermal regeneration under expanded condition. Front Physiol 2024; 15:1306011. [PMID: 38455843 PMCID: PMC10917960 DOI: 10.3389/fphys.2024.1306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Skin soft tissue expansion is the process of obtaining excess skin mixed with skin development, wound healing, and mechanical stretching. Previous studies have reported that tissue expansion significantly induces epidermal proliferation throughout the skin. However, the mechanisms underlying epidermal regeneration during skin soft tissue expansion are yet to be clarified. Hair follicle stem cells (HFSCs) have been recognized as a promising approach for epidermal regeneration. This study examines HFSC-related epidermal regeneration mechanisms under expanded condition and proposes a potential method for its cellular and molecular regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing Fan
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Liu J, Wan XX, Zheng SY, Khan MA, He HH, Feng YX, Xiao JG, Chen Y, Hu XM, Zhang Q, Xiong K. Mesenchymal Stem Cell Transplantation in Type 1 Diabetes Treatment: Current Advances and Future Opportunity. Curr Stem Cell Res Ther 2024; 19:1175-1184. [PMID: 37817652 DOI: 10.2174/011574888x268740231002054459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Type 1 Diabetes (T1D) is characterized by hyperglycemia, and caused by a lack of insulin secretion. At present there is no cure for T1D and patients are dependent on exogenous insulin for lifelong, which seriously affects their lives. Mesenchymal stem cells (MSCs) can be differentiated to β cell-like cells to rescue the secretion of insulin and reconstruct immunotolerance to preserve the function of islet β cells. Due to the higher proportion of children and adolescents in T1D patients, the efficacy and safety issue of the application of MSC's transplant in T1D was primarily demonstrated and identified by human clinical trials in this review. Then we clarified the mechanism of MSCs to relieve the symptom of T1D and found out that UC-MSCs have no obvious advantage over the other types of MSCs, the autologous MSCs from BM or menstrual blood with less expanded ex vivo could be the better choice for clinical application to treat with T1D through documentary analysis. Finally, we summarized the advances of MSCs with different interventions such as genetic engineering in the treatment of T1D, and demonstrated the advantages and shortage of MSCs intervened by different treatments in the transplantation, which may enhance the clinical efficacy and overcome the shortcomings in the application of MSCs to T1D in future.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | | | - Hui-Hong He
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xing Feng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jing-Ge Xiao
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yu Chen
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
| |
Collapse
|
8
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
9
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
10
|
Liu ZJ, Wang MJ, Luo J, Tan YT, Hou M, Wang SC. A bibliometric analysis of hotpots and trends for the relationship between skin inflammation and regeneration. Front Surg 2023; 10:1180624. [PMID: 37151861 PMCID: PMC10160476 DOI: 10.3389/fsurg.2023.1180624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Skin regeneration is a challenging issue worldwide. Increasing research has highlighted the role of immune cells in healing and the underlying regulatory mechanism. The purpose of this study was to identify the hotspots and trends in skin regeneration and inflammation research through bibliometrics and to provide insights into the future development of fundamental research and disease treatment. Methods Publications were collected from the Web of Science Core Collection on March 1, 2022. Articles and reviews published in English from January 1, 1999, to December 31, 2022, were selected, and statistical analyses of countries, institutions, authors, references, and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8. Results A total of 3,894 articles and reviews were selected. The number of publications on skin inflammation and regeneration showed an increasing trend over time. Additionally, authors and institutions in the United States, United Kingdom, Canada, and China appeared to be at the forefront of research in the field of skin inflammation and regeneration. Werner Sabine published some of the most cited papers. Wound Repair and Regeneration was the most productive journal, while Journal of Investigative Dermatology was the most cited journal. Angiogenesis, diamonds, collagen, cytokine, and keratinocytes were the five most commonly used keywords. Conclusion The number of publications on skin inflammation and regeneration show an increasing trend. Moreover, a series of advanced technologies and treatments for skin regeneration, such as exosomes, hydrogels, and wound dressings, are emerging, which will provide precise information for the treatment of skin wounds. This study can enhance our understanding of current hotspots and future trends in skin inflammation and regeneration research, as well as provide guidelines for fundamental research and clinical treatment.
Collapse
Affiliation(s)
- Zhen-jiang Liu
- Department of Cardiology, Cardiac Catheterization Lab, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Jia Luo
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Ya-ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Hou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
- Party Committee Office, The Second Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Min Hou Shu-chao Wang
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Min Hou Shu-chao Wang
| |
Collapse
|
11
|
Wang K, Chen Z, Jin L, Zhao L, Meng L, Kong F, He C, Kong F, Zheng L, Liang F. LPS-pretreatment adipose-derived mesenchymal stromal cells promote wound healing in diabetic rats by improving angiogenesis. Injury 2022; 53:3920-3929. [PMID: 36357245 DOI: 10.1016/j.injury.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) play a key role in wound healing, and the advantages of pretreated MSCs in wound healing have previously been reported. In the present study, we investigated the impact of LPS pretreated human adipose-derived MSCs on skin wound healing in diabetic rats. We found that some improvements occurred through improving angiogenesis. Then, we scrutinized the impact of lipopolysaccharide (LPS) treatment on human adipose-derived MSCs in a high-glucose (HG) medium, as an in vitro diabetic model. In vivo findings revealed significant improvements in epithelialization and angiogenesis of diabetic wounds which received LPS pre-MSCs. Particularly, LPS pre-MSCs-treated diabetic wounds reached considerably higher percentages of wound closure. Also, the granulation tissue of these wounds had higher pronounced epithelialization and more vascularization compared with PBS-treated and MSCs-treated diabetic ones by CD31, VEGF, CD90, collagen 1, and collagen 3 immunostaining. Western-blots analyses indicated that LPS pre-MSCs led to the upregulation of vascular endothelial growth factor (VEGF) and DNMT1. In addition, significantly higher cell viability (proliferation/colonie), and elevated VEGF and DNMT1 protein expression were observed when MSCs were treated with LPS (10 ng/ml, 6 h) in HG culture media. Based on these findings, it is suggested that LPS pre-MSCs could promote wound repair and skin regeneration, in some major processes, via the improvement of cellular behaviors of MSCs in the diabetic microenvironment. The beneficial advantages of LPS treated with mesenchymal stem cells on wound healing may lead to establishing a novel approach as an alternative therapeutic procedure to cure chronic wounds in diabetic conditions.
Collapse
Affiliation(s)
- Kuixiang Wang
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Ziying Chen
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lili Zhao
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Libin Meng
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanting Kong
- Department of Oncology Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Chenxin He
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanlei Kong
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lingtao Zheng
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fang Liang
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China.
| |
Collapse
|
12
|
Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF. Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: A mechanistic analysis. J Pineal Res 2022; 73:e12833. [PMID: 36106819 DOI: 10.1111/jpi.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 μM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shao-Jing Tan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fa-Li Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, Texas, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Therapeutic Potential of Skin Stem Cells and Cells of Skin Origin: Effects of Botanical Drugs Derived from Traditional Medicine. Stem Cell Rev Rep 2022; 18:1986-2001. [PMID: 35648312 DOI: 10.1007/s12015-022-10388-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/09/2022]
Abstract
Skin, the largest organ of the body, plays a vital role in protecting inner organs. Skin stem cells (SSCs) comprise a group of cells responsible for multiplication and replacement of damaged and non-functional skin cells; thereby help maintain homeostasis of skin functions. SSCs and differentiated cells of the skin such as melanocytes and keratinocytes, have a plethora of applications in regenerative medicine. However, as SSCs reside in small populations in specific niches in the skin, use of external stimulants for cell proliferation in vitro and in vivo is vital. Synthetic and recombinant stimulants though available, pose many challenges due to their exorbitant prices, toxicity issues and side effects. Alternatively, time tested traditional medicine preparations such as polyherbal formulations are widely tested as effective natural stimulants, to mainly stimulate proliferation, and melanogenesis/prevention of melanogenesis of both SSCs and cells of skin origin. Complex, multiple targets, synergistic bioactivities of the phytochemical constituents of herbal preparations amply justify these as natural stimulants. The use of these formulations in clinical applications such as in skin regeneration for burn wounds, wound healing acceleration, enhancement or decrease of melanin pigmentations will be in great demand. Although much multidisciplinary research is being conducted on the use of herbal formulas as stem cell stimulants, very few related clinical trials are yet registered with the NIH clinical trial registry. Therefore, identification/ discovery, in depth investigations culminating in clinical trials, as well as standardization and commercialization of such natural stimulants must be promoted, ensuring the sustainable use of medicinal plants.
Collapse
|
14
|
Yang R, Yang S, Zhao J, Hu X, Chen X, Wang J, Xie J, Xiong K. Correction to: Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Res Ther 2022; 13:183. [PMID: 35513828 PMCID: PMC9074258 DOI: 10.1186/s13287-022-02868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Shuai Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jingling Zhao
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ximin Hu
- Clinical Medicine Eight-Year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|
16
|
Wan XX, Zhang DY, Khan MA, Zheng SY, Hu XM, Zhang Q, Yang RH, Xiong K. Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Front Endocrinol (Lausanne) 2022; 13:859638. [PMID: 35370989 PMCID: PMC8972968 DOI: 10.3389/fendo.2022.859638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yi Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| |
Collapse
|
17
|
Zhang Q, Wan XX, Hu XM, Zhao WJ, Ban XX, Huang YX, Yan WT, Xiong K. Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases. Front Cell Dev Biol 2021; 9:809656. [PMID: 34977045 PMCID: PMC8717932 DOI: 10.3389/fcell.2021.809656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
20
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
21
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
22
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
23
|
Shi X, Jiang L, Zhao X, Chen B, Shi W, Cao Y, Chen Y, Li X, He Y, Li C, Liu X, Li X, Lu H, Chen C, Liu J. Adipose-Derived Stromal Cell-Sheets Sandwiched, Book-Shaped Acellular Dermal Matrix Capable of Sustained Release of Basic Fibroblast Growth Factor Promote Diabetic Wound Healing. Front Cell Dev Biol 2021; 9:646967. [PMID: 33842472 PMCID: PMC8027315 DOI: 10.3389/fcell.2021.646967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The management of diabetic wounds is a therapeutic challenge in clinical settings. Current tissue engineering strategies for diabetic wound healing are insufficient, owing to the lack of an appropriate scaffold that can load a large number of stem cells and induce the interaction of stem cells to form granulation tissue. Herein we fabricated a book-shaped decellularized dermal matrix (BDDM), which shows a high resemblance to native dermal tissue in terms of its histology, microstructure, and ingredients, is non-cytotoxic and low-immunogenic, and allows adipose-derived stromal cell (ASC) attachment and proliferation. Then, a collagen-binding domain (CBD) capable of binding collagen was fused into basic fibroblast growth factor (bFGF) to synthetize a recombinant growth factor (termed as CBD-bFGF). After that, CBD-bFGF was tethered onto the collagen fibers of BDDM to improve its endothelial inducibility. Finally, a functional scaffold (CBD-bFGF/BDDM) was fabricated. In vitro and in vivo experiments demonstrated that CBD-bFGF/BDDM can release tethered bFGF with a sustained release profile, steadily inducing the interaction of stem cells down to endothelial differentiation. ASCs were cultured to form a cell sheet and then sandwiched by CBD-bFGF/BDDM, thus enlarging the number of stem cells loaded into the scaffold. Using a rat model, the ASC sheets sandwiched with CBD-bFGF/BDDM (ASCs/CBD-bFGF/BDDM) were capable of enhancing the formation of granulation tissue, promoting angiogenesis, and facilitating collagen deposition and remodeling. Therefore, the findings of this study demonstrate that ASCs/CBD-bFGF/BDDM could be applicable for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Shi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Liyuan Jiang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Bei Chen
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Wei Shi
- Department of Emergency, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Yaowu Chen
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xiying Li
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Yusheng He
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Chengjie Li
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xiaoren Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
| | - Xing Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Can Chen,
| | - Jun Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, China
- The First School of Clinical Medicine, Xiangnan University, Chenzhou, China
- Jun Liu,
| |
Collapse
|
24
|
Gensler M, Leikeim A, Möllmann M, Komma M, Heid S, Müller C, Boccaccini AR, Salehi S, Groeber-Becker F, Hansmann J. 3D printing of bioreactors in tissue engineering: A generalised approach. PLoS One 2020; 15:e0242615. [PMID: 33253240 PMCID: PMC7703892 DOI: 10.1371/journal.pone.0242615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
3D printing is a rapidly evolving field for biological (bioprinting) and non-biological applications. Due to a high degree of freedom for geometrical parameters in 3D printing, prototype printing of bioreactors is a promising approach in the field of Tissue Engineering. The variety of printers, materials, printing parameters and device settings is difficult to overview both for beginners as well as for most professionals. In order to address this problem, we designed a guidance including test bodies to elucidate the real printing performance for a given printer system. Therefore, performance parameters such as accuracy or mechanical stability of the test bodies are systematically analysed. Moreover, post processing steps such as sterilisation or cleaning are considered in the test procedure. The guidance presented here is also applicable to optimise the printer settings for a given printer device. As proof of concept, we compared fused filament fabrication, stereolithography and selective laser sintering as the three most used printing methods. We determined fused filament fabrication printing as the most economical solution, while stereolithography is most accurate and features the highest surface quality. Finally, we tested the applicability of our guidance by identifying a printer solution to manufacture a complex bioreactor for a perfused tissue construct. Due to its design, the manufacture via subtractive mechanical methods would be 21-fold more expensive than additive manufacturing and therefore, would result in three times the number of parts to be assembled subsequently. Using this bioreactor we showed a successful 14-day-culture of a biofabricated collagen-based tissue construct containing human dermal fibroblasts as the stromal part and a perfusable central channel with human microvascular endothelial cells. Our study indicates how the full potential of biofabrication can be exploited, as most printed tissues exhibit individual shapes and require storage under physiological conditions, after the bioprinting process.
Collapse
Affiliation(s)
- Marius Gensler
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Anna Leikeim
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marc Möllmann
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Miriam Komma
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Heid
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Müller
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Florian Groeber-Becker
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Jan Hansmann
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
25
|
Li Y, Ma K, Zhang L, Xu H, Zhang N. Human Umbilical Cord Blood Derived-Mesenchymal Stem Cells Alleviate Dextran Sulfate Sodium-Induced Colitis by Increasing Regulatory T Cells in Mice. Front Cell Dev Biol 2020; 8:604021. [PMID: 33330503 PMCID: PMC7732515 DOI: 10.3389/fcell.2020.604021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD), which main clinical manifestations include abdominal pain and diarrhea occurring repeatedly, is a kind of autoimmune disease. It has been reported in preceding studies that mesenchymal stem cells (MSCs) can reduce inflammation by regulating the function of immune cells. But studies about the interaction between MSCs and adaptive immune cells, especially in IBD models, are insufficient. Therefore, the objective of this research was to estimate the therapeutic effects of MSCs from human umbilical cord blood (hUCB-MSCs) in an IBD model of rodent and to clarify the therapeutic mechanisms of hUCB-MSCs. Dextran sulfate sodium (DSS) was used to induce colitis in rodent. Mice with colitis were treated with intraperitoneal infusions of hUCB-MSCs and evaluated for mortality and diverse disease symptoms containing weight reduction, diarrhea, and bloody stools. The levels of histopathologic severity and generation of regulatory T cells (Treg) were also determined. Treatment with hUCB-MSCs ameliorated the clinical and histopathologic severity of acute and chronic colitis in mice. Furthermore, T cell infiltration into the inflamed colon was significantly decreased (p = 0.0175), and Foxp3+ cells were substantially higher in the hUCB-MSC group than that of the DSS group. Our results suggest that hUCB-MSCs are able to alleviate inflammation via adding Foxp3+ Tregs in an IBD model of mouse. As a result, these findings suggest the opportunity of hUCB-MSC being applied to patients with IBD.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Ke Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Luping Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Multipotent adult progenitor cells grown under xenobiotic-free conditions support vascularization during wound healing. Stem Cell Res Ther 2020; 11:389. [PMID: 32894199 PMCID: PMC7487685 DOI: 10.1186/s13287-020-01912-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cell therapy has been evaluated pre-clinically and clinically as a means to improve wound vascularization and healing. While translation of this approach to clinical practice ideally requires the availability of clinical grade xenobiotic-free cell preparations, studies proving the pre-clinical efficacy of the latter are mostly lacking. Here, the potential of xenobiotic-free human multipotent adult progenitor cell (XF-hMAPC®) preparations to promote vascularization was evaluated. Methods The potential of XF-hMAPC cells to support blood vessel formation was first scored in an in vivo Matrigel assay in mice. Next, a dose-response study was performed with XF-hMAPC cells in which they were tested for their ability to support vascularization and (epi) dermal healing in a physiologically relevant splinted wound mouse model. Results XF-hMAPC cells supported blood vessel formation in Matrigel by promoting the formation of mature (smooth muscle cell-coated) vessels. Furthermore, XF-hMAPC cells dose-dependently improved wound vascularization associated with increasing wound closure and re-epithelialization, granulation tissue formation, and dermal collagen organization. Conclusions Here, we demonstrated that the administration of clinical-grade XF-hMAPC cells in mice represents an effective approach for improving wound vascularization and healing that is readily applicable for translation in humans.
Collapse
|