1
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Traeger-Synodinos J, Vrettou C, Sofocleous C, Zurlo M, Finotti A, Gambari R. Impact of α-Globin Gene Expression and α-Globin Modifiers on the Phenotype of β-Thalassemia and Other Hemoglobinopathies: Implications for Patient Management. Int J Mol Sci 2024; 25:3400. [PMID: 38542374 PMCID: PMC10969871 DOI: 10.3390/ijms25063400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 11/03/2024] Open
Abstract
In this short review, we presented and discussed studies on the expression of globin genes in β-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of β-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of β-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by β-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with β-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.
Collapse
Affiliation(s)
- Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed 2023; 5:1204536. [PMID: 37529398 PMCID: PMC10387548 DOI: 10.3389/fgeed.2023.1204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level "de novo" production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the "de novo" production of HbA using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Arif T, Farooq A, Ahmad FJ, Akhtar M, Choudhery MS. Prime editing: A potential treatment option for β-thalassemia. Cell Biol Int 2023; 47:699-713. [PMID: 36480796 DOI: 10.1002/cbin.11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The potential to therapeutically alter the genome is one of the remarkable scientific developments in recent years. Genome editing technologies have provided an opportunity to precisely alter genomic sequence(s) in eukaryotic cells as a treatment option for various genetic disorders. These technologies allow the correction of harmful mutations in patients by precise nucleotide editing. Genome editing technologies such as CRISPR (clustered regularly interspaced short palindromic repeat) and base editors have greatly contributed to the practical applications of gene editing. However, these technologies have certain limitations, including imperfect editing, undesirable mutations, off-target effects, and lack of potential to simultaneously edit multiple loci. Recently, prime editing (PE) has emerged as a new gene editing technology with the potential to overcome the above-mentioned limitations. Interestingly, PE not only has higher specificity but also does not require double-strand breaks. In addition, a minimum possibility of potential off-target mutant sites makes PE a preferred choice for therapeutic gene editing. Furthermore, PE has the potential to introduce insertion and deletions of all 12 single-base mutations at target sequences. Considering its potential, PE has been applied as a treatment option for genetic diseases including hemoglobinopathies. β-Thalassemia, for example, one of the most significant blood disorders characterized by reduced levels of functional hemoglobin, could potentially be treated using PE. Therapeutic reactivation of the γ-globin gene in adult β-thalassemia patients through PE technology is considered a promising therapeutic strategy. The current review aims to briefly discuss the genome editing strategies and potential applications of PE for the treatment of β-thalassemia. In addition, the review will also focus on challenges associated with the use of PE.
Collapse
Affiliation(s)
- Taqdees Arif
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Aroosa Farooq
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Fridoon Jawad Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of Punjab Lahore, Lahore, Punjab, Pakistan
| | - Mahmood S Choudhery
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
5
|
Zha G, Xiao X, Tian Y, Zhu H, Chen P, Zhang Q, Yu C, Li H, Wang Y, Cao C. An efficient isoelectric focusing of microcolumn array chip for screening of adult Beta-Thalassemia. Clin Chim Acta 2023; 538:124-130. [PMID: 36400321 DOI: 10.1016/j.cca.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Traditional capillary isoelectric focusing (cIEF), liquid chromatography (LC) and capillary zone electrophoresis (CZE) still suffered from low resolution for hemoglobinopathy screening. Herein, a 30-mm pH 5.2-7.8 microcolumn IEF (mIEF) array chip was developed for hemoglobinopathy screening. As a proof of concept, adult beta-thalassemia was chosen as a model disease. In the method, blood samples were hemolyzed via hemolysin solution and loaded into the microcolumn. The experiments showed that (i) the species of Hb A, F, A2 and variants were clearly separated in the chip, and the resolution was greatly higher than the ones of LC/CZE/cIEF; (ii) up to 24 samples could be simultaneously analyzed in 12-min run; (iii) the intraday and interday RSDs were respectively 3.32-4.91 % and 4.07-5.33 %. The assays of mIEF to total 634 samples were compared with the ones of LC (n = 327) and PCR (n = 307). The cutoff of 3.5 % HbA2 led to the sensitivity of 100 % and specificity of 89.1 % for the mIEF-based screening; and there was 96.7 % coincidence between the methods of mIEF and PCR if refer Hb A2 and F. The method had the merits of facility, efficiency, specificity and sensitivity in contrast to the currently-used methods, implying its potential to screening of beta-thalassemia and hemoglobinopathies.
Collapse
Affiliation(s)
- Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuan Xiao
- NHC Key Laboratory of Thalassemia Medicine, Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, P. R. China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hengying Zhu
- NHC Key Laboratory of Thalassemia Medicine, Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ping Chen
- NHC Key Laboratory of Thalassemia Medicine, Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, P. R. China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Changjie Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Honggen Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxing Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: a systematic review. Mol Genet Genomics 2023; 298:1-11. [PMID: 36403178 DOI: 10.1007/s00438-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The CRISPR/Cas9 technique is easily programmable, fast, more powerful, and efficient at generating a mutation compared to previous gene therapy methods. β-thalassemia is the most common autosomal recessive disorder worldwide. Appropriate genomic changes in the β gene can be modified to alleviate the symptoms of the disease using the CRISPR/Cas9 system. PubMed/Medline, Scopus, Web of Science, and SID databases were searched in Persian and English from February 2000 to September 2022. Finally, 39 articles had inclusion criteria which were reviewed by two separate individuals. Among the reviewed articles, articles were divided into three categories. In the first group, studies attemped to increase the expression of γ-globin and production of hemoglobin F. The strategy of second group of studies were the reduction of the α-globin chain to prevent hemolysis of RBCs by accumulation of excessive α-globins. The third group corrected the mutations causing β-thalassemia. Studies have shown that the genome of β-thalassemia patients can be modified using the CRISPR/Cas9 technique, and this approach might be promising for the treatment of β-thalassemia.
Collapse
|
7
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022; 49:7087-7100. [PMID: 35705772 PMCID: PMC9199458 DOI: 10.1007/s11033-022-07519-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) system, referred to as CRISPR/Cas system, has attracted significant interest in scientific community due to its great potential in translating into versatile therapeutic tools in biomedical field. For instance, a myriad of studies has demonstrated that the CRISPR/Cas system is capable of detecting various types of viruses, killing antibiotic-resistant bacteria, treating inherited genetic diseases, and providing new strategies for cancer therapy. Furthermore, CRISPR/Cas systems are also exploited as research tools such as genome engineering tool that allows researchers to interrogate the biological roles of unexplored genes or uncover novel functions of known genes. Additionally, the CRISPR/Cas system has been employed to edit the genome of a wide range of eukaryotic, prokaryotic organisms and experimental models, including but not limited to mammalian cells, mice, zebrafish, plants, yeast, and Escherichia coli. The present review mainly focuses on summarizing recent discoveries regarding the type II CRISPR/Cas9 and type VI CRISPR/Cas13a systems to give researchers a glimpse of their potential applications in the biological and biomedical field.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China.
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| | - Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
10
|
Zakaria NA, Bahar R, Abdullah WZ, Mohamed Yusoff AA, Shamsuddin S, Abdul Wahab R, Johan MF. Genetic Manipulation Strategies for β-Thalassemia: A Review. Front Pediatr 2022; 10:901605. [PMID: 35783328 PMCID: PMC9240386 DOI: 10.3389/fped.2022.901605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Thalassemias are monogenic hematologic diseases that are classified as α- or β-thalassemia according to its quantitative abnormalities of adult α- or β-globin chains. β-thalassemia has widely spread throughout the world especially in Mediterranean countries, the Middle East, Central Asia, India, Southern China, and the Far East as well as countries along the north coast of Africa and in South America. The one and the only cure for β-thalassemia is allogenic hematopoietic stem cell transplantations (HSCT). Nevertheless, the difficulty to find matched donors has hindered the availability of this therapeutic option. Therefore, this present review explored the alternatives for β-thalassemia treatment such as RNA manipulation therapy, splice-switching, genome editing and generation of corrected induced pluripotent stem cells (iPSCs). Manipulation of β-globin RNA is mediated by antisense oligonucleotides (ASOs) or splice-switching oligonucleotides (SSOs), which redirect pre-mRNA splicing to significantly restore correct β-globin pre-mRNA splicing and gene product in cultured erythropoietic cells. Zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) are designer proteins that can alter the genome precisely by creating specific DNA double-strand breaks. The treatment of β-thalassemia patient-derived iPSCs with TALENs have been found to correct the β-globin gene mutations, implying that TALENs could be used as a therapy option for β-thalassemia. Additionally, CRISPR technologies using Cas9 have been used to fix mutations in the β-globin gene in cultured cells as well as induction of hereditary persistence of fetal hemoglobin (HPFH), and α-globin gene deletions have proposed a possible therapeutic option for β-thalassemia. Overall, the accumulated research evidence demonstrated the potential of ASOs-mediated aberrant splicing correction of β-thalassemia mutations and the advancements of genome therapy approaches using ZFNs, TALENs, and CRISPR/Cas9 that provided insights in finding the permanent cure of β-thalassemia.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rosnah Bahar
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Universiti Sains Malaysia (USM)-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Penang, Malaysia
| | - Ridhwan Abdul Wahab
- International Medical School, Management and Science University, Shah Alam, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|