1
|
Zeng B, Xu L, Wang G, Shi R, Wang K, Wang S, Li C. Distinctive small molecules blend: Promotes lacrimal gland epithelial cell proliferation in vitro and accelerates lacrimal gland injury repair in vivo. Ocul Surf 2024; 34:283-295. [PMID: 39209152 DOI: 10.1016/j.jtos.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aims to develop a novel serum-free culture strategy containing only two small molecules, Y27632 and SB431542 (2C), for in vitro expansion of mouse lacrimal gland epithelial cells (LGECs) and investigate an innovative therapeutic approach for lacrimal gland (LG) injury. METHODS LGECs proliferative capacity was assessed by cell counting, crystal violet staining, qRT-PCR and immunofluorescence. Cell differentiation was achieved by manipulating culture conditions and assessed by qRT-PCR and AQP5 immunofluorescence. LGECs were seeded in Matrigel for three-dimensional culture and assessed by qRT-PCR and immunofluorescence. Secretory function of the cultures was assayed by ELISA. In vivo, 2C injection verified its reparative capacity in a mouse LG injury model. Corneal fluorescein staining, phenol red cotton thread, H&E, immunofluorescence and Western blot were used to assess LG injury repair. RESULTS LGECs cultured with 2C exhibited high expression of stemness/proliferation markers and maintained morphology and proliferative capacity even after the tenth passage. Removal of 2C was efficacious in achieving LGECs differentiation, characterized by the increased AQP5 expression and LTF secretion. 3D spheroids cultured with 2C demonstrated differentiation potential, forming microglandular structures containing multiple LG cell types with secretory functions after 2C removal. In vivo, 2C improved the structural integrity and function of the injured LG. CONCLUSIONS We present a small molecule combination, 2C, that promotes LGECs expansion and differentiation in vitro and accelerates LG injury repair in vivo. This approach has potential applications for providing a stable source of seed cells for tissue engineering applications, providing new sights for LG-related diseases treatment.
Collapse
Affiliation(s)
- Baihui Zeng
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Lina Xu
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guoliang Wang
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruize Shi
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Kerui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shurong Wang
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China.
| | - Cheng Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center &The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China; Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, 361102, China.
| |
Collapse
|
2
|
Bastani S, Staal FJT, Canté-Barrett K. The quest for the holy grail: overcoming challenges in expanding human hematopoietic stem cells for clinical use. Stem Cell Investig 2023; 10:15. [PMID: 37457748 PMCID: PMC10345135 DOI: 10.21037/sci-2023-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation has been the golden standard for many hematological disorders. However, the number of HSCs obtained from several sources, including umbilical cord blood (UCB), often is insufficient for transplantation. For decades, maintaining or even expanding HSCs for therapeutic purposes has been a "holy grail" in stem cell biology. Different methods have been proposed to improve the efficiency of cell expansion and enhance homing potential such as co-culture with stromal cells or treatment with specific agents. Recent progress has shown that this is starting to become feasible using serum-free and well-defined media. Some of these protocols to expand HSCs along with genetic modification have been successfully applied in clinical trials and some others are studied in preclinical and clinical studies. However, the main challenges regarding ex vivo expansion of HSCs such as limited growth potential and tendency to differentiate in culture still need improvements. Understanding the biology of blood stem cells, their niche and signaling pathways has provided possibilities to regulate cell fate decisions and manipulate cells to optimize expansion of HSCs in vitro. Here, we review the plethora of HSC expansion protocols that have been proposed and indicate the current state of the art for their clinical application.
Collapse
Affiliation(s)
- Sepideh Bastani
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Albayrak E, Akgol S, Turan RD, Uslu M, Kocabas F. BML-260 promotes the growth of cord blood and mobilized peripheral blood hematopoietic stem and progenitor cells with improved reconstitution ability. J Cell Biochem 2022; 123:2009-2029. [PMID: 36070493 DOI: 10.1002/jcb.30324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs), which are multipotent and have the ability to self-renew, are frequently used in the treatment of hematological diseases and cancer. Small molecules that target HSC quiescence regulators could be used for ex vivo expansion of both mobilized peripheral blood (mPB) and umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC). We identified and investigated 35 small molecules that target HSC quiescence factors. We looked at how they affected HSC activity, such as expansion, quiescence, multilineage capacity, cycling ability, metabolism, cytotoxicity, and genotoxicity. A transplantation study was carried out on immunocompromised mice to assess the expanded cells' repopulation and engraftment abilities. 4-[(5Z)-5-benzylidene-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]benzoic acid (BML)-260 and tosyl-l-arginine methyl ester (TAME) significantly increased both mPB and UCB-HSPC content and activated HSC re-entry into the cell cycle. The improved multilineage capacity was confirmed by the colony forming unit (CFU) assay. Furthermore, gene expression analysis revealed that BML-260 and TAME molecules aided HSC expansion by modulating cell cycle kinetics, such as p27, SKP2, and CDH1. In addition to these in vitro findings, we discovered that BML-260-expanded HSCs had a high hematopoietic reconstitution capacity with increased immune cell content after xenotransplantation into immunocompromised mice. In addition to the BML-260 molecule, a comparison study of serum-containing and serum-free chemically defined media, including various supplements, was performed. These in vitro and xenotransplantation results show that BML-260 molecules can be used for human HSC expansion and regulation of function. Furthermore, the medium composition discovered may be a novel platform for human HSPC expansion that could be used in clinical trials.
Collapse
Affiliation(s)
- Esra Albayrak
- Center of Stem Cell Research and Application, 19 Mayıs University, Samsun, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sezer Akgol
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Raife Dilek Turan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Merve Uslu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|