1
|
Zhang MH, Zhang WH, Lu Y, Yu LM, Han XX, Xu Y, Wu MJ, Ding WH, Liu YH. Dental pulp stem cells promote genioglossus repair and systemic amelioration in chronic intermittent hypoxia. iScience 2024; 27:111143. [PMID: 39524365 PMCID: PMC11543914 DOI: 10.1016/j.isci.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/25/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) and is not well addressed by current therapies. The genioglossus (GG) is the largest upper airway dilator controlling OSA pathology, making its repair a potential treatment. This study investigates dental pulp stem cells (DPSCs) in repairing GG injury in a CIH mouse model. We induced DPSCs to myogenic lineage cells (iDPSCs) and transplanted them into GG of CIH mice. DPSCs/iDPSCs grafts improved EMGGG and muscle type transitions while reducing tumor necrosis factor α (TNF-α), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatine kinase (CK) levels, improving body weight. Moreover, iDPSCs increased Pax7+/Ki67+ and human-derived STEM121 cells in the GG compared with DPSCs. DPSCs/iDPSCs enhanced Desmin+ myotube formation in myoblasts under hypoxia in vitro, with iDPSCs increased human-derived myogenic markers and nuclei in myotubes. These results indicate that iDPSCs, beyond their paracrine effects like DPSCs, directly participate in myogenic differentiation, supporting the potential use of DPSCs for OSA treatment.
Collapse
Affiliation(s)
- Meng-Han Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Wei-Hua Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Yun Lu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Li-Ming Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Yan Xu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Meng-Jie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wang-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yue-Hua Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
2
|
Nitahara-Kasahara Y, Posadas-Herrera G, Hirai K, Oda Y, Snagu-Miyamoto N, Yamanashi Y, Okada T. Characterization of disease-specific alterations in metabolites and effects of mesenchymal stromal cells on dystrophic muscles. Front Cell Dev Biol 2024; 12:1363541. [PMID: 38946797 PMCID: PMC11211584 DOI: 10.3389/fcell.2024.1363541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding gene that leads to muscle necrosis and degeneration with chronic inflammation during growth, resulting in progressive generalized weakness of the skeletal and cardiac muscles. We previously demonstrated the therapeutic effects of systemic administration of dental pulp mesenchymal stromal cells (DPSCs) in a DMD animal model. We showed preservation of long-term muscle function and slowing of disease progression. However, little is known regarding the effects of cell therapy on the metabolic abnormalities in DMD. Therefore, here, we aimed to investigate the mechanisms underlying the immunosuppressive effects of DPSCs and their influence on DMD metabolism. Methods A comprehensive metabolomics-based approach was employed, and an ingenuity pathway analysis was performed to identify dystrophy-specific metabolomic impairments in the mdx mice to assess the therapeutic response to our established systemic DPSC-mediated cell therapy approach. Results and Discussion We identified DMD-specific impairments in metabolites and their responses to systemic DPSC treatment. Our results demonstrate the feasibility of the metabolomics-based approach and provide insights into the therapeutic effects of DPSCs in DMD. Our findings could help to identify molecular marker targets for therapeutic intervention and predict long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kunio Hirai
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Yuki Oda
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Noriko Snagu-Miyamoto
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
- Division of Oral and Maxillofacial Surgical, Tokyo Women’s Medical School, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
4
|
Chang M, Cai Y, Gao Z, Chen X, Liu B, Zhang C, Yu W, Cao Q, Shen Y, Yao X, Chen X, Sun H. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 2023:10.1007/s00415-023-11796-x. [PMID: 37258941 DOI: 10.1007/s00415-023-11796-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.
Collapse
Affiliation(s)
- Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, 224500, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xiaoyang Chen
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, People's Republic of China.
| |
Collapse
|
5
|
Nitahara-Kasahara Y, Nakayama S, Kimura K, Yamaguchi S, Kakiuchi Y, Nito C, Hayashi M, Nakaishi T, Ueda Y, Okada T. Immunomodulatory amnion-derived mesenchymal stromal cells preserve muscle function in a mouse model of Duchenne muscular dystrophy. Stem Cell Res Ther 2023; 14:108. [PMID: 37106393 PMCID: PMC10142496 DOI: 10.1186/s13287-023-03337-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable genetic disease characterized by degeneration and necrosis of myofibers, chronic inflammation, and progressive muscle weakness resulting in premature mortality. Immunosuppressive multipotent mesenchymal stromal cell (MSC) therapy could be an option for DMD patients. We focused on amnion-derived mesenchymal stromal cells (AMSCs), a clinically viable cell source owing to their unique characteristics, such as non-invasive isolation, mitotic stability, ethical acceptability, and minimal risk of immune reaction and cancer. We aimed to identify novel immunomodulatory effects of AMSCs on macrophage polarization and their transplantation strategies for the functional recovery of skeletal and cardiac muscles. METHODS We used flow cytometry to analyze the expression of anti-inflammatory M2 macrophage markers on peripheral blood mononuclear cells (PBMCs) co-cultured with human AMSCs (hAMSCs). hAMSCs were intravenously injected into DMD model mice (mdx mice) to assess the safety and efficacy of therapeutic interventions. hAMSC-treated and untreated mdx mice were monitored using blood tests, histological examinations, spontaneous wheel-running activities, grip strength, and echocardiography. RESULTS hAMSCs induced M2 macrophage polarization in PBMCs via prostaglandin E2 production. After repeated systemic hAMSC injections, mdx mice exhibited a transient downregulation of serum creatin kinase. Limited mononuclear cell infiltration and a decreased number of centrally nucleated fibers were indicative of regenerated myofibers following degeneration, suggesting an improved histological appearance of the skeletal muscle of hAMSC-treated mdx mice. Upregulated M2 macrophages and altered cytokine/chemokine expressions were observed in the muscles of hAMSC-treated mdx mice. During long-term experiments, a significant decrease in the grip strength in control mdx mice significantly improved in the hAMSC-treated mdx mice. hAMSC-treated mdx mice maintained running activity and enhanced daily running distance. Notably, the treated mice could run longer distances per minute, indicating high running endurance. Left ventricular function in DMD mice improved in hAMSC-treated mdx mice. CONCLUSIONS Early systemic hAMSC administration in mdx mice ameliorated progressive phenotypes, including pathological inflammation and motor dysfunction, resulting in the long-term improvement of skeletal and cardiac muscle function. The therapeutic effects might be associated with the immunosuppressive properties of hAMSCs via M2 macrophage polarization. This treatment strategy could provide therapeutic benefits to DMD patients.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Soya Nakayama
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Koichi Kimura
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yuko Kakiuchi
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Masahiro Hayashi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yasuyoshi Ueda
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
7
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
8
|
Stem Cells from Dental Sources: Translational Applications in Medicine and Novel Approaches. Int J Mol Sci 2022; 23:ijms23084308. [PMID: 35457122 PMCID: PMC9024459 DOI: 10.3390/ijms23084308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
|
9
|
Nitahara-Kasahara Y, Mizumoto S, Inoue YU, Saka S, Posadas-Herrera G, Nakamura-Takahashi A, Takahashi Y, Hashimoto A, Konishi K, Miyata S, Masuda C, Matsumoto E, Maruoka Y, Yoshizawa T, Tanase T, Inoue T, Yamada S, Nomura Y, Takeda S, Watanabe A, Kosho T, Okada T. A new mouse model of Ehlers-Danlos syndrome generated using CRISPR/Cas9-mediated genomic editing. Dis Model Mech 2021; 14:273847. [PMID: 34850861 PMCID: PMC8713987 DOI: 10.1242/dmm.048963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies. Summary: CRISPR/Cas9 genome-engineered Chst14−/− mouse models of musculocontractural Ehlers-Danlos syndrome (mcEDS) display similar myopathic features (particularly those caused by the loss of D4ST1) to mcEDS patients and may facilitate further understanding of mcEDS.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Shota Saka
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Yuki Takahashi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Ayana Hashimoto
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kohei Konishi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Chiaki Masuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Emi Matsumoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Toshiki Tanase
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Yoshihiro Nomura
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8603, Japan.,Division of Clinical Genetics, Kanazawa University Hospital, Kanazawa 920-8640, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| |
Collapse
|
10
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|