1
|
Chen P, Li B, Lu Z, Xu Q, Zheng H, Jiang S, Jiang L, Zheng X. PCBP2 as an intrinsic agi ng factor regulates the senescence of hBMSCs through the ROS-FGF2 signaling axis. eLife 2025; 13:RP92419. [PMID: 40053388 PMCID: PMC11888601 DOI: 10.7554/elife.92419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2. Methods Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways. Results PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells. Conclusions This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis. Funding This study was supported by the National Natural Science Foundation of China (82172474).
Collapse
Affiliation(s)
- Pengbo Chen
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Bo Li
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Zeyu Lu
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qingyin Xu
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Huoliang Zheng
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shengdan Jiang
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Leisheng Jiang
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinfeng Zheng
- Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Wang Z, Zhen W, Wang Q, Sun Y, Jin S, Yu S, Wu X, Zhang W, Zhang Y, Xu F, Wang R, Xie Y, Sun W, Xu J, Zhang H. NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport. Stem Cell Res Ther 2025; 16:30. [PMID: 39876006 PMCID: PMC11776329 DOI: 10.1186/s13287-025-04156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging. METHODS BMSCs were isolated from alveolar bone of human volunteers aged 26-33 (young) and 66-78 (aged). NEAT1 expression and distribution changes during aging process were observed using fluorescence in situ hybridization (FISH) in young (3 months) and aged (18 months) mice or human BMSCs. Subsequent RNA pulldown and proteomic analyses, along with single-cell analysis, immunofluorescence, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP), were conducted to investigate that NEAT1 impairs the nuclear transport of mitotic FGF2 and contributes to BMSCs aging. RESULTS We reveal that NEAT1 undergoes significant upregulated and shifts from nucleus to cytoplasm in bone marrow and BMSCs during aging process. In which, the expression correlates with nuclear DNA content during karyokinesis, suggesting a link to mitogenic factor. Within NEAT1 knockdown, hallmarks of cellular aging, including senescence-associated secretory phenotype (SASP), p16, and p21, were significantly downregulated. RNA pulldown and proteomic analyses further identify NEAT1 involved in osteoblast differentiation, mitotic cell cycle, and ribosome biogenesis, highlighting its role in maintaining BMSCs differentiation and proliferation. Notably, as an essential growth factor of BMSCs, Fibroblast Growth Factor 2 (FGF2) directly abundant binds to NEAT1 and the sites enriched with nuclear localization motifs. Importantly, NEAT1 decreased the interaction between FGF2 and Karyopherin Subunit Beta 1 (KPNB1), influencing the nuclear transport of mitogenic FGF2. CONCLUSIONS Our findings position NEAT1 as a critical regulator of mitogenic protein networks that govern BMSC aging. Targeting NEAT1 might offer novel therapeutic strategies to rejuvenate aged BMSCs.
Collapse
Affiliation(s)
- Zifei Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenyu Zhen
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qing Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuqiang Sun
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Siyu Jin
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Sensen Yu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xing Wu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenhao Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yulong Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Fei Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuxuan Xie
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jianguang Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Hengguo Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Zhu S, Liao X, Xu Y, Zhou N, Pan Y, Song J, Zheng T, Zhang L, Bai L, Wang Y, Zhou X, Gou M, Tao J, Liu R. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact Mater 2025; 43:392-405. [PMID: 39399841 PMCID: PMC11470575 DOI: 10.1016/j.bioactmat.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Digital light processing (DLP)-based bioprinting technology holds immense promise for the advancement of hydrogel constructs in biomedical applications. However, creating high-performance hydrogel constructs with this method is still a challenge, as it requires balancing the physicochemical properties of the matrix while also retaining the cellular activity of the encapsulated cells. Herein, we propose a facile and practical strategy for the 3D bioprinting of high-performance hydrogel constructs through the in-situ birth of stem cell spheroids. The strategy is achieved by loading the cell/dextran microdroplets within gelatin methacryloyl (GelMA) emulsion, where dextran functions as a decoy to capture and aggregate the cells for bioprinting while GelMA enables the mechanical support without losing the structural complexity and fidelity. Post-bioprinting, the leaching of dextran results in a smooth curved surface that promotes in-situ birth of spheroids within hydrogel constructs. This process significant enhances differentiation potential of encapsulated stem cells. As a proof-of-concept, we encapsulate dental pulp stem cells (DPSCs) within hydrogel constructs, showcasing their regenerative capabilities in dentin and neovascular-like structures in vivo. The strategy in our study enables high-performance hydrogel tissue construct fabrication with DLP-based bioprinting, which is anticipated to pave a promising way for diverse biomedical applications.
Collapse
Affiliation(s)
- Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yue Xu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Taijing Zheng
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Lin Zhang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Liyun Bai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400042, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
4
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
5
|
Wang X, Yu L, Duan J, Chang M, Hao M, Xiang Z, Qiu C, Sun J, Di D, Xia H, Li D, Yuan S, Tian Y, Qiu J, Liu H, Liu X, Sang Y, Wang L. Anti-Stress and Anti-ROS Effects of MnOx-Functionalized Thermosensitive Nanohydrogel Protect BMSCs for Intervertebral Disc Degeneration Repair. Adv Healthc Mater 2024:e2400343. [PMID: 38738846 DOI: 10.1002/adhm.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Stem cell transplantation is proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel is proposed for BMSC transplantation for IDD therapy. The MnOx-functionalized thermosensitive nanohydrogel not only successfully protects BMSCs from shear force and mechanical stress before and after injection, but also repairs the harsh high-ROS environment in degenerative IVDs, thus effectively increasing the viability of BMSCs and resident nucleus pulposus cells (NPCs). The MnOx-functionalized thermosensitive nanohydrogel provides mechanical protection for stem cells and helps to remove endogenous ROS, providing a promising stem cell delivery platform for the treatment of IDD.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Mingzheng Chang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ziqian Xiang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Cheng Qiu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Junyuan Sun
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Derun Di
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Dezheng Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Suomao Yuan
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Yonghao Tian
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Lianlei Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
7
|
Park S, Kim S, Lim K, Shin Y, Song K, Kang GH, Kim DY, Shin HC, Cho SG. Thermostable Basic Fibroblast Growth Factor Enhances the Production and Activity of Human Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:16460. [PMID: 38003648 PMCID: PMC10671285 DOI: 10.3390/ijms242216460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cell (WJ-MSC)-derived exosomes contain a diverse cargo and exhibit remarkable biological activity, rendering them suitable for regenerative and immune-modulating functions. However, the quantity of secretion is insufficient. A large body of prior work has investigated the use of various growth factors to enhance MSC-derived exosome production. In this study, we evaluated the utilization of thermostable basic fibroblast growth factor (TS-bFGF) with MSC culture and exosome production. MSCs cultured with TS-bFGF displayed superior proliferation, as evidenced by cell cycle analysis, compared with wild-type bFGF (WT-bFGF). Stemness was assessed through mRNA expression level and colony-forming unit (CFU) assays. Furthermore, nanoparticle tracking analysis (NTA) measurements revealed that MSCs cultured with TS-bFGF produced a greater quantity of exosomes, particularly under three-dimensional culture conditions. These produced exosomes demonstrated substantial anti-inflammatory and wound-healing effects, as confirmed by nitric oxide (NO) assays and scratch assays. Taken together, we demonstrate that utilization of TS-bFGF for WJ-MSC-derived exosome production not only increases exosome yield but also enhances the potential for various applications in inflammation regulation and wound healing.
Collapse
Affiliation(s)
- SangRok Park
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
| | - SeJong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - KyungMin Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - YeoKyung Shin
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dae Young Kim
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea; (D.Y.K.); (H.-C.S.)
| | - Hang-Cheol Shin
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea; (D.Y.K.); (H.-C.S.)
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (S.K.); (K.L.); (Y.S.); (K.S.); (G.-H.K.)
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Zhang D, Du Q, Li C, Ding C, Chen J, He Y, Duan T, Feng Q, Yu Y, Zhou Q. Functionalized Human Umbilical Cord Mesenchymal Stem Cells and Injectable HA/Gel Hydrogel Synergy in Endometrial Repair and Fertility Recovery. Acta Biomater 2023:S1742-7061(23)00339-2. [PMID: 37331615 DOI: 10.1016/j.actbio.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Intrauterine adhesions (IUA) caused by endometrial injury are one of the main causes of female infertility. The current treatments for endometrial injury offer limited clinical benefits and cannot improve endometrial receptivity and pregnancy outcomes. Tissue engineering and regenerative medicine are considered potential solutions to address this concern and may offer effective treatment methods for the regeneration of injured human endometrium. Herein, we prepared an injectable hydrogel based on oxidized hyaluronic acid (HA-CHO) and hydrazide-grafted gelatin (Gel-ADH). The injectable hydrogel showed satisfactory biocompatibility when mixed with human umbilical cord mesenchymal stem cells (hUCMSCs). In an endometrial injury rat model, the treatment with hUCMSCs-loaded injectable hydrogel significantly enhanced the thickness of the endometrium and increased the abundance of blood vessels and glands in the injured endometrium compared to the control group. The hUCMSCs-loaded injectable hydrogel treatment significantly reduced endometrial fibrosis, decreased the expression of the pro-inflammatory factors (IL-1β and IL-6) and increased the expression of the anti-inflammatory factor (IL-10). This treatment induced endometrial VEGF expression by activating the MEK/ERK1/2 signaling pathway. Moreover, this treatment improved endometrial receptivity to the embryo and restored the embryo implantation rate similar to the sham group (48% in the sham group vs 46% in the treatment group), and this treatment achieved pregnancy and live birth in rats with endometrial injury. In addition, we also preliminarily validated the safety of this treatment in the maternal rats and fetuses. Collectively, our study showed that the hUCMSCs-loaded injectable hydrogel hold potential as an effective treatment strategy promoting rapid recovery of endometrial injury, and this hydrogel is a promising biomaterial for regenerative medicine applications. STATEMENT OF SIGNIFICANCE: : 1. Oxidized hyaluronic acid (HA-CHO)/hydrazide-grafted gelatin (Gel-ADH) hydrogel combined with human umbilical cord mesenchymal stem cells (hUCMSCs) are effective in improving the regeneration of endometrium in the endometrial injury rat model. 2. The hUCMSCs-loaded hydrogel treatment promotes the expression of endometrial VEGF through MEK/ERK1/2 signaling pathway and regulates the balance of inflammatory factors. 3. The embryo implantation and live birth rates restore to normal level in the endometrial injury rat model, and the hydrogel has no adverse effects on maternal rats, fetuses, and offspring development after the treatments.
Collapse
Affiliation(s)
- Donghai Zhang
- Department of Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092 China
| | - Qianqian Du
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Cong Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Chuanfeng Ding
- Department of Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092 China
| | - Junfeng Chen
- Department of Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092 China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 400044, China
| | - Tao Duan
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| | - Qian Zhou
- Department of Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092 China; Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Zhou Y, Zhu P, Shen S, Wang Y, Li B, Guo B, Li H. Overexpression of fibroblast growth factor receptor 2 in bone marrow mesenchymal stem cells enhances osteogenesis and promotes critical cranial bone defect regeneration. Front Cell Dev Biol 2023; 11:1208239. [PMID: 37266455 PMCID: PMC10229770 DOI: 10.3389/fcell.2023.1208239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Background: Reconstruction of cranial bone defects is one of the most challenging problems in reconstructive surgery, and several biological tissue engineering methods have been used to promote bone repair, such as genetic engineering of bone marrow mesenchymal stem cells (BMSCs). Fibroblast growth factor receptor 2 (Fgfr2) is an important regulator of bone construction and can be used as a potential gene editing site. However, its role in the osteogenesis process of BMSCs remains unclear. This article clarifies the function of Fgfr2 in BMSCs and explores the role of Fgfr2-overexpressed BMSCs carried by light-induced porous hydrogel (GelMA) in the repair of cranial bone defects. Methods: Lenti-virus was used to overexpress Fgfr2 in BMSCs, and cell counting kit-8, transwell, and flow cytometry assays were conducted to investigate the proliferation, migration, and characteristics. After 0, 3, 7, and 10 days of osteogenic or chondrogenic induction, the changes in osteogenic and chondrogenic ability were detected by real-time PCR, western blot, alkaline phosphatase staining, alizarin Red staining, and alcian blue staining. To investigate the viability of BMSCs carried by GelMA, calcein and propyl iodide staining were carried out as well. Finally, a critical cranial bone defect model was established in 6-week-old male mice and micro-computerized tomography, masson staining, and immunohistochemistry of OCN were conducted to test the bone regeneration properties of implanting Fgfr2-overexpressed BMSCs with GelMA in cranial bone defects over 6 weeks. Results: Overexpression of Fgfr2 in BMSCs significantly promoted cell proliferation and migration and increased the percentage of CD200+CD105+ cells. After osteogenic and chondrogenic induction, Fgfr2 overexpression enhanced both osteogenic and chondrogenic ability. Furthermore, in cranial bone defect regeneration, BMSCs carried by light-induced GelMA showed favorable biocompatibility, and Fgfr2-overexpressed BMSCs induced superior cranial bone regeneration compared to a normal BMSCs group and an untreated blank group. Conclusion: In vitro, Fgfr2 enhanced the proliferation, migration, and stemness of BMSCs and promoted osteogenesis and chondrogenesis after parallel induction. In vivo, BMSCs with Fgfr2 overexpression carried by GelMA showed favorable performance in treating critical cranial bone defects. This study clarifies the multiple functions of Fgfr2 in BMSCs and provides a new method for future tissue engineering.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Peixiang Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Siyu Shen
- Medical School of Nanjing University, Nanjing, China
| | - Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baosheng Guo
- Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Liu W, Lin L, Yang Q, Jin S, Jiang H. Point Mutation in Prkra Alters miRNA Expression During Embryonic External Ear Development. J Craniofac Surg 2023; 34:777-784. [PMID: 35968958 DOI: 10.1097/scs.0000000000008837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Microtia is a congenital malformation of the external ear that can lead to conductive hearing impairment. In this study, we investigated the role of the Prkra gene in external ear development. We used advanced sequencing techniques to evaluate the differential expression of microRNAs (miRNAs) involved in external ear development in mouse embryos after point mutation in the Prkra gene. The Prkra Little ear mouse model was used to obtain mouse embryos at the E15.5 and E17.5 developmental stages, and changes in miRNA expression profiles were detected. Gene ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were performed on differentially expressed miRNAs, and existing and new miRNAs were studied. miRNAs were observed to be involved in multiple signaling pathways during the E15.5 and E17.5 developmental stages. The results show a correlation between miRNA regulation and external ear development in Prkra Little ear mice, and differences were detected in key regulatory miRNAs owing to point mutations in the Prkra gene. This study provides new insights into the biological mechanisms through which miRNAs regulate external ear development in mouse embryos. Changes in the mouse miRNA expression profiles can also provide insights into the pathogenesis of human congenital microtia at the level of miRNA regulation.
Collapse
Affiliation(s)
- Wei Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100144, China
| | | | | | | | | |
Collapse
|
11
|
Li Y, Yao X, Lin Y, Xing Y, Liu C, Xu J, Wu D. Identification and validation of autophagy-related genes during osteogenic differentiation of bone marrow mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1364-1372. [PMID: 36474568 PMCID: PMC9699953 DOI: 10.22038/ijbms.2022.65528.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is an essential stage in bone formation. Autophagy plays a pivotal role in the self-renewal potential and pluripotency of stem cells. This study aimed to explore the function of autophagy-related genes during osteogenic differentiation of BMSCs. MATERIALS AND METHODS The differentially expressed autophagy-related genes (ARGs) were obtained from the GEO and HADb databases. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software. The PPI and hub gene mining networks were constructed using the STRING database and Cytoscape. Finally, the RT-qPCR was conducted to validate the expression level of ARGs in BMSCs. RESULTS Thirty-seven differentially expressed ARGs were finally obtained, including 12 upregulated and 25 downregulated genes. GO and KEGG enrichment analysis showed that most of these genes were enriched in apoptosis and autophagy. The PPI network revealed strong interactions between differentially expressed ARGs. The expression level of differentially expressed ARGs tested by RT-qPCR showed 6 upregulated ARGs, including FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, and 4 downregulated ARGs, including MAPK8IP1, NRG1, VEGFA, and ITGA6 were consistent with the expression of high-throughput sequencing data. CONCLUSION We identified 37 ARGs during osteogenic differentiation using bioinformatics analysis. FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, MAPK8IP1, NRG1, VEGFA, and ITGA6 may regulate osteogenic differentiation of hBMSCs by involving autophagy pathway. This study provides new insight into the osteogenic differentiation of hBMSCs and may be available in developing therapeutic strategies for maxillofacial bone defects.
Collapse
Affiliation(s)
- Yan Li
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,These authors contributed eqully to this work
| | - Xiu Yao
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200433, China,These authors contributed eqully to this work
| | - Yanjun Lin
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yifeng Xing
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Chaowei Liu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jianghan Xu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,Corresponding author: Dong Wu. Research Center of Dental and Craniofacial Implants, Fujian Medical University, No. 246, Yangqiao Road, Gulou District, Fuzhou, Fujian 350001, China.
| |
Collapse
|
12
|
Sibthorpe PEM, Fitzgerald DM, Chen L, Sillence MN, de Laat MA. A starch-rich treat affects enteroinsular responses in ponies. J Am Vet Med Assoc 2022; 260:S94-S101. [PMID: 36191143 DOI: 10.2460/javma.22.06.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of a starch-rich treat, added to the daily diet of ponies for 10 days, on enteroinsular responses to meal consumption. ANIMALS 10 mixed-breed adult ponies owned by Queensland University of Technology were used in the study. Six ponies were metabolically healthy, and 4 were insulin dysregulated at the start of the study, according to the results of an in-feed oral glucose test. PROCEDURES A bread-based treat was offered twice daily for 10 days, adding 0.36 ± 0.04 g/kg body weight (BW) carbohydrates to the daily diet. Before and after treatment, the intestinal capacity for simple carbohydrate absorption was approximated with a modified D-xylose absorption test. Plasma glucagon-like peptide-2 (GLP-2), blood glucose, and serum insulin responses to eating were also measured before and after treatment. RESULTS The absorption of D-xylose (area under the curve [AUC]) increased 1.6-fold (P < .001) after 10 days of eating the treat. In addition, while basal (fasted) GLP-2 concentrations were not affected, GLP-2 AUC increased 1.4-fold in response to eating (P = .005). The treat did not change blood glucose or serum insulin concentrations, before, during, or after eating. CLINICAL RELEVANCE A small amount of additional carbohydrate each day in the form of a treat can cause a measurable change in the enteroinsular responses to eating.
Collapse
Affiliation(s)
- Poppy E M Sibthorpe
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Danielle M Fitzgerald
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lan Chen
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Martin N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Melody A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Bmp5 Mutation Alters miRNA Expression During Embryonic External Ear Development. J Craniofac Surg 2022; 33:2692-2697. [PMID: 35765140 DOI: 10.1097/scs.0000000000008655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT To understand the changes in gene regulation and expression of MicroRNA (miRNA) involved in external mouseear embryonic development after point mutation of the Bmp5 gene, the outer ear tissues of developed E15.5 and E17.5 mouse embryos were obtained using a Bmp5 short ear mouse model, and the changes in miRNA expression profiles were detected. Changes in miRNA expression in the experimental and control groups were identified during Bmp5 short ear mouse embryo development at E15.5 and E17.5. GO and Kyoto Encyclopedia of Genes and Genomes functional annotations were performed on differentially expressed miRNAs. Multiple signal pathways related to miRNA expression were enhanced during the development of E15.5 and E17.5 embryos of Bmp5 short-ear mice. Based on the basic characteristics of miRNAs, this study aimed to determine the differential expression of miRNAs in Bmp5 short-ear mice during the development of external ear embryos using advanced sequencing techniques. The results showed differences in some key regulatory miRNA changes after point mutations in the Bmp5 gene. This study provides new insights into the mechanism by which miRNAs regulate the development of the external mouse ear. Changes in miRNA expression profiles can also provide clues for studying the biological regulatory mechanism of external ear embryonic development.
Collapse
|
14
|
Bai B, Hou M, Hao J, Liu Y, Ji G, Zhou G. Research progress in seed cells for cartilage tissue engineering. Regen Med 2022; 17:659-675. [PMID: 35703020 DOI: 10.2217/rme-2022-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.
Collapse
Affiliation(s)
- Baoshuai Bai
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Mengjie Hou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| |
Collapse
|
15
|
Lv X, Wang L, Zou X, Huang S. Umbilical Cord Mesenchymal Stem Cell Therapy for Regenerative Treatment of Rheumatoid Arthritis: Opportunities and Challenges. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3927-3936. [PMID: 34584402 PMCID: PMC8462093 DOI: 10.2147/dddt.s323107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology with a high rate of disability. Traditional treatments for RA remain a challenging issue. For example, nonsteroidal anti-inflammatory drugs (NSAIDs) have no therapeutic effects on joint destruction, and the prominent side effects include gastrointestinal symptoms. RA is characterized by recurrence and bone attrition. Therefore, regenerative medicine and the use of umbilical cord mesenchymal stem cell (UC-MSC) therapies have recently emerged as potential options. UC-MSCs are multifunctional stem cells that are present in neonatal umbilical cord tissue and can differentiate into many kinds of cells, which have broad clinical application prospects in the tissue engineering of bone, cartilage, muscle, tendon, ligament, nerve, liver, endothelium, and myocardium. Moreover, UC-MSCs have advantages, such as convenient collection of materials and no ethical disputes; thus, these cells have attracted increasing attention from researchers. However, there are few clinical studies regarding UC-MSC therapy for RA. In this paper, we will review traditional drugs for RA treatment and then focus on UC-MSC therapy for RA, including preclinical and clinical UC-MSC applications for RA patients in the context of regenerative medicine. Finally, we will summarize the challenges and perspectives of UC-MSCs as a potential therapeutic strategy for RA. This review will help to design and discover more potent and efficacious treatments for RA patients and aid in advancing this class of cell therapy.
Collapse
Affiliation(s)
- Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liu Zhou, Guang Xi, People's Republic of China
| | - Liming Wang
- Shaanxi Jiuzhou Biomedical Science and Technology Group, Xi'an, Shaan Xi, People's Republic of China
| | - XiaoRong Zou
- Department of Hematology, 986 Hospital of Fourth Military Medical University, Xi'an, Shaan Xi, People's Republic of China
| | - Shigao Huang
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|