1
|
Wang Y, Wen Y, Kim K, Wu H, Zhang J, Dobberfuhl AD, Chen B. Functional outcome of the anterior vaginal wall in a pelvic surgery injury rat model after treatment with stem cell-derived progenitors of smooth muscle cells. Stem Cell Res Ther 2024; 15:291. [PMID: 39256865 PMCID: PMC11389472 DOI: 10.1186/s13287-024-03900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) exhibit limited proliferation and differentiation, which minimizes the risk of tumor formation while restoring smooth muscle cells (SMCs). Up to 29% of women suffer from recurrence of vaginal prolapse after prolapse surgery. Therefore, there is a need for therapies that can restore vaginal function. SMCs contribute to vaginal tone and contractility. We sought to examine whether human pSMCs can restore vaginal function in a rat model. METHODS Female immunocompromised RNU rats were divided into 5 groups: intact controls (n = 12), VSHAM (surgery + saline injection, n = 35), and three cell-injection groups (surgery + cell injection using pSMCs from three patients, n = 14/cell line). The surgery to induce vaginal injury was analogous to prolapse surgery. Menopause was induced by surgical ovariectomy. The vagina, urethra, bladder were harvested 10 weeks after surgery (5 weeks after cell injection). Organ bath myography was performed to evaluate the contractile function of the vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. RESULTS Vaginal smooth muscle contractions induced by carbachol and KCl in the cell-injection groups were significantly greater than those in the VSHAM group. Collagen I protein expression in the vagina of the cell-injections groups was significantly higher than in the VSHAM group. Vaginal elastin protein expression was similar between the cell-injection and VSHAM groups. In the urethra, gene expression levels of collagen I, III, and elastin were all significantly greater in the cell-injection groups than in the VSHAM group. Collagen I, III, and elastin protein expression of the urethra did not show a consistent trend between cell-injection groups and the VSHAM group. CONCLUSIONS Human iPSC-derived pSMCs transplantation appears to be associated with improved contractile function of the surgically injured vagina in a rat model. This is accompanied by changes in extracellular protein expression the vagina and urethra. These observations support further efforts in the translation of pSMCs into a treatment for regenerating the surgically injured vagina in women who suffer recurrent prolapse after surgery.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Yan Wen
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA.
- , Palo Alto, USA.
| | - Kayla Kim
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Hugo Wu
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Jerry Zhang
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Bertha Chen
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| |
Collapse
|
2
|
Wang Y, Wen Y, Kim K, Wu H, Zhang J, Dobberfuhl AD, Chen B. Functional outcome of the anterior vaginal wall in a pelvic surgery injury rat model after treatment with stem cell-derived progenitors of smooth muscle cells. RESEARCH SQUARE 2024:rs.3.rs-4172308. [PMID: 38946968 PMCID: PMC11213168 DOI: 10.21203/rs.3.rs-4172308/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) have limited proliferation and differentiation, which may minimize the risk of in vivo tumor formation while restoring smooth muscle cell deficiencies. Up to 30 % of women who suffer from recurrence of vaginal prolapse after prolapse surgery are faced with reoperation. Therefore, there is an unmet need for therapies that can restore vaginal tissue function. We hypothesize that human pSMCs can restore vaginal function in a vaginal-injury rat model. Methods Female immune-compromised RNU rats were divided into 5 groups: intact controls (n=12), VSHAM (surgery + saline injection, n=33), and cell-injection group (surgery + cell injection using three patient pSMCs lines, n=14/cell line). The surgery, similar to what is done in vaginal prolapse surgery, involved ovariectomy, urethrolysis, and vagina injury. The vagina, urethra, bladder dome and trigone were harvested 10 weeks after surgery (5 weeks after injection). Organ bath myography was performed to evaluate the contractile function of vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. Results When compared to the VSHAM group, cell-injection groups showed significantly increased vaginal smooth muscle contractions induced by carbachol (groups A and C) and by KCl (group C), and significantly higher collagen I protein expression in the vagina (groups A and B). Elastin mRNA and protein expressions in the vagina did not correlate with injection group. In the urethra, mRNA expressions of collagen I, collagen III, and elastin were all significantly higher in the cell-injection groups compared to the VSHAM group. Collagen I protein expression of the urethra was also higher in the cell-injection group compared to the VSHAM group. Elastin protein expression in the urethra did not correlate with injection group. Conclusions Human iPSC-derived pSMCs improved contractile function of the post-surgery vagina. Additionally, pSMC injection modulated collagen I, collagen III and elastin mRNA and protein expressions in the vagina and urethra. These findings suggest that pSMCs may be a possible therapy for vaginal prolapse recurrence after surgical intervention.
Collapse
Affiliation(s)
| | - Yan Wen
- Stanford University School of Medicine
| | - Kayla Kim
- Stanford University School of Medicine
| | - Hugo Wu
- Stanford University School of Medicine
| | | | | | | |
Collapse
|
3
|
Huang LP, Liu Y, Li QJ, Zhang WQ, Wu CY, Zhao LM, Xie HQ. A Modified Small Intestinal Submucosa Patch with Multifunction to Promote Scarless Repair and Reinvigoration of Urethra. Adv Healthc Mater 2023; 12:e2300519. [PMID: 37062917 DOI: 10.1002/adhm.202300519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Indexed: 04/18/2023]
Abstract
To reconstruct and restore the functions of the male urethra is a challenging task for urologists. The acellular matrix graft currently used in the clinics is mono-functional and may cause a series of complications including stricture, fibrosis, and stone formation. As a result, such graft materials cannot meet the increasing demand for multifunctionality in the field of urethral tissue engineering. In this context, a multifunctional urethral patch is designed for the repair of urethral defects by mixing protocatechualdehyde (PCA) with small intestinal submucosa (SIS) under an alkalin condition to allow cross linking. As shown, the PCA/SIS patch possesses excellent biocompatibility, antioxidant activity, and anti-inflammatory property. More importantly, this patch can remarkably promote the adhesion, proliferation, and directional extension of rabbit bladder epithelial mucous cells (R-EMCs) as well as rabbit bladder smooth muscle cells (R-SMCs), and upregulate the expression of cytokeratin in the EMCs and contractile protein in the SMCs in vitro. In vivo experiments also confirm that the PCA/SIS patch can significantly enhance scarless repair of urethral defects in rabbits by facilitating smooth muscle regeneration, reducing excessive collagen deposition, and accelerating re-epithelialization and neovascularization. Taken together, the newly developed multifunctional PCA/SIS patch provides a promising candidate for urethral regeneration.
Collapse
Affiliation(s)
- Li-Ping Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian-Jin Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen-Qian Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Kibschull M, Nguyen TTN, Chow T, Alarab M, Lye SJ, Rogers I, Shynlova O. Differentiation of patient-specific void urine-derived human induced pluripotent stem cells to fibroblasts and skeletal muscle myocytes. Sci Rep 2023; 13:4746. [PMID: 36959367 PMCID: PMC10036466 DOI: 10.1038/s41598-023-31780-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Cell-based therapy is a major focus for treatment of stress urinary incontinence (SUI). However, derivation of primary cells requires tissue biopsies, which often have adverse effects on patients. A recent study used human induced pluripotent stem cells (iPSC)-derived smooth muscle myocytes for urethral sphincter regeneration in rats. Here, we establish a workflow using iPSC-derived fibroblasts and skeletal myocytes for urethral tissue regeneration: (1) Cells from voided urine of women were reprogrammed into iPSC. (2) The iPSC line U1 and hESC line H9 (control) were differentiated into fibroblasts expressing FSP1, TE7, vinculin, vimentin, αSMA, fibronectin and paxillin. (3) Myogenic differentiation of U1 and H9 was induced by small molecule CHIR99021 and confirmed by protein expression of myogenic factors PAX7, MYOD, MYOG, and MF20. Striated muscle cells enriched by FACS expressed NCAM1, TITIN, DESMIN, TNNT3. (4) Human iPSC-derived fibroblasts and myocytes were engrafted into the periurethral region of RNU rats. Injected cells were labelled with ferric nanoparticles and traced by Prussian Blue stain, human-specific nuclear protein KU80, and human anti-mitochondria antibody. This workflow allows the scalable derivation, culture, and in vivo tracing of patient-specific fibroblasts and myocytes, which can be assessed in rat SUI models to regenerate urethral damages and restore continence.
Collapse
Affiliation(s)
- M Kibschull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada
| | - T T N Nguyen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada
| | - T Chow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - M Alarab
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Division of Urogynecology and Reconstructive Pelvic Surgery, Mount Sinai Hospital, Toronto, Canada
| | - S J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - I Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - O Shynlova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde St, Suite 6-1017, Toronto, ON, M5T 3H7, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Xu L, Sima Y, Xiao C, Chen Y. Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor dysfunction. Hum Cell 2023; 36:937-949. [PMID: 36940057 DOI: 10.1007/s13577-023-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Pelvic floor dysfunction (PFDs), which include pelvic organ prolapse (POP), stress urinary incontinence (SUI) and anal incontinence (AI), are common degenerative diseases in women that have dramatic effects on quality of life. The pathology of PFDs is based on impaired pelvic connective tissue supportive strength due to an imbalance in extracellular matrix (ECM) metabolism, the loss of a variety of cell types, such as fibroblasts, muscle cells, peripheral nerve cells, and oxidative stress and inflammation in the pelvic environment. Fortunately, exosomes, which are one of the major secretions of mesenchymal stromal cells (MSCs), are involved in intercellular communication and the modulation of molecular activities in recipient cells via their contents, which are bioactive proteins and genetic factors such as mRNAs and miRNAs. These components modify fibroblast activation and secretion, facilitate ECM modelling, and promote cell proliferation to enhance pelvic tissue regeneration. In this review, we focus on the molecular mechanisms and future directions of exosomes derived from MSCs that are of great value in the treatment of PFD.
Collapse
Affiliation(s)
- Leimei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yizhen Sima
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Chengzhen Xiao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
6
|
Liu X, Li T, Zhang J, Lin X, Wang W, Fan X, Wang L. Mesenchymal stem cell-based therapy for female stress urinary incontinence. Front Cell Dev Biol 2023; 11:1007703. [PMID: 36711031 PMCID: PMC9880261 DOI: 10.3389/fcell.2023.1007703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Stress urinary incontinence (SUI) adversely affects the quality of life of patients, while the currently available surgical and non-surgical therapies are not effective in all patients. Application of mesenchymal stem cells (MSCs) for regaining the ability to control urination has attracted interest. Herein, we reviewed the literature and analyzed recent studies on MSC-based therapies for SUI, summarized recent treatment strategies and their underlying mechanisms of action, while assessing their safety, effectiveness, and prospects. In addition, we traced and sorted the root literature and, from an experimental design perspective, divided the obtained results into four categories namely single MSC type therapy for SUI, MSC-based combination therapy for SUI, treatment of SUI with the MSC secretome, and other factors influencing MSC therapy. Although evidence demonstrates that the treatment strategies are safe and effective, the underlying mechanisms of action remain nebulous, hence more clinical trials are warranted. Therefore, future studies should focus on designing clinical trials of MSC-based therapies to determine the indications for treatment, cell dosage, appropriate surgical strategies, and optimal cell sources, and develop clinically relevant animal models to elucidate the molecular mechanisms underlying stem cell therapies improvement of SUI.
Collapse
Affiliation(s)
- Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Xiaochun Liu,
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiling Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaodong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Biomedical Engineering at Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|