1
|
Saka OM, Dora DD, Kibar G, Tevlek A. Expanding the role of exosomes in drug, biomolecule, and nanoparticle delivery. Life Sci 2025; 368:123499. [PMID: 39993468 DOI: 10.1016/j.lfs.2025.123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Exosomes are nanoscale extracellular vesicles released by diverse cell types, serving essential functions in intercellular communication and physiological processes. These vesicles have garnered considerable interest in recent years for their potential as drug delivery systems, attributed to their natural origin, minimal immunogenicity, high biocompatibility, and capacity to traverse biological barriers, including the blood-brain barrier. Exosomes can be obtained from diverse biological fluids, rendering them accessible and versatile vehicles for therapeutic medicines. This study emphasizes the burgeoning significance of exosomes in drug administration, concentrating on their benefits, including improved stability, target selectivity, and the capacity to encapsulate various biomolecules, such as proteins, nucleic acids, and small molecules. Notwithstanding their potential applications, other problems remain, including as effective drug loading, industrial scalability, and the standardization of isolation methodologies. Overcoming these hurdles via new research is essential for fully harnessing the promise of exosomes in therapeutic applications, especially in the treatment of intricate diseases like cancer and neurological disorders.
Collapse
Affiliation(s)
- Ongun Mehmet Saka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06800, Turkey
| | - Devrim Demir Dora
- Department of Pharmacology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Gunes Kibar
- Micro Nano Particles (MNP) Research Group, Materials and Engineering Department, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey; UNAM-National Nanotech. Research Center and Institute of Materials Science & Nanotech. I.D. Bilkent University, Ankara 06800, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey.
| |
Collapse
|
2
|
Raja M, Ramamurthy K, Sudhakaran G, Guru A, Arockiaraj J. Exploring the potential of bacterial-derived EVs for targeted enzyme replacement therapy: mechanisms, applications, and future directions. Arch Microbiol 2025; 207:118. [PMID: 40208336 DOI: 10.1007/s00203-025-04294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles produced by cells which promote intercellular communication by delivering different contents such as DNA, RNA, and proteins. These vesicles, nano-sized and released into the extracellular space, are present everywhere under both normal and pathological conditions. Probiotic-derived EVs can serve as nanocarriers for therapeutic cargo, particularly in enzyme replacement therapy (ERT). Traditional ERT for lysosomal storage diseases (LSDs) faces significant challenges, including the inability of enzymes to cross the blood-brain barrier (BBB) and their susceptibility to degradation. Studies show EVs can transport enzyme cargoes across the BBB, accurately delivering them to tissues affected by LSDs. Probiotic EVs also possess immunomodulatory properties, providing therapeutic benefits in inflammatory conditions. However, their potential for delivering deficient enzymes in LSDs remains unclear. This review discusses using probiotic EVs in ERT for targeted enzyme delivery to treat LSDs more efficiently than other exosomes. This novel strategy minimizes off-target delivery and enhances immunomodulatory effects, making it more advantageous than live probiotic bacteria. Probiotic EVs show promise for therapeutic approaches, especially in treating LSDs and inflammatory diseases, by modulating immune responses and delivering enzymes across biological barriers like the BBB. Future research should optimize production, engineer targeted therapies, and confirm safety and efficacy through clinical trials. Expanding studies to include diverse probiotic strains could uncover new therapeutic applications, enhancing their versatility and effectiveness.
Collapse
Affiliation(s)
- Mohanakrishna Raja
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2025; 670:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Lerussi G, Villagrasa-Araya V, Moltó-Abad M, del Toro M, Pintos-Morell G, Seras-Franzoso J, Abasolo I. Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases. Life (Basel) 2025; 15:70. [PMID: 39860010 PMCID: PMC11766495 DOI: 10.3390/life15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB. EVs offer a viable alternative, allowing for targeted delivery to the CNS and improving therapeutic outcomes. We discuss recent advancements in the engineering and modification of EVs to enhance targeting, circulation time and cargo stability, and provide a detailed overview of their application in LSDs, such as Gaucher and Fabry diseases, and Sanfilippo syndrome. Despite their potential, challenges remain in scaling production, ensuring isolation purity, and meeting regulatory requirements. Future developments will focus on overcoming these barriers, paving the way for the clinical translation of EV-based therapies in LSDs and other CNS disorders.
Collapse
Affiliation(s)
- Giovanni Lerussi
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Verónica Villagrasa-Araya
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Mireia del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d’Hebron and MetabERN, 08035 Barcelona, Spain;
- Networking Research Center on Rare Diseases (CIBERER), 08035 Barcelona, Spain
| | - Guillem Pintos-Morell
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Joaquin Seras-Franzoso
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
5
|
Calzoni E, Cerrotti G, Sagini K, Delo F, Buratta S, Pellegrino RM, Alabed HBR, Fratini F, Emiliani C, Urbanelli L. Evidence of Lysosomal β-Hexosaminidase Enzymatic Activity Associated with Extracellular Vesicles: Potential Applications for the Correction of Sandhoff Disease. J Funct Biomater 2024; 15:153. [PMID: 38921527 PMCID: PMC11204914 DOI: 10.3390/jfb15060153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Extracellular vesicles (EVs) can be isolated from biological fluids and cell culture medium. Their nanometric dimension, relative stability, and biocompatibility have raised considerable interest for their therapeutic use as delivery vehicles of macromolecules, namely nucleic acids and proteins. Deficiency in lysosomal enzymes and associated proteins is at the basis of a group of genetic diseases known as lysosomal storage disorders (LSDs), characterized by the accumulation of undigested substrates into lysosomes. Among them, GM2 gangliosidoses are due to a deficiency in the activity of lysosomal enzyme β-hexosaminidase, leading to the accumulation of the GM2 ganglioside and severe neurological symptoms. Current therapeutic approaches, including enzyme replacement therapy (ERT), have proven unable to significantly treat these conditions. Here, we provide evidence that the lysosomal β-hexosaminidase enzyme is associated with EVs released by HEK cells and that the EV-associated activity can be increased by overexpressing the α-subunit of β-hexosaminidase. The delivery of EVs to β-hexosaminidase-deficient fibroblasts results in a partial cross-correction of the enzymatic defect. Overall findings indicate that EVs could be a source of β-hexosaminidase that is potentially exploitable for developing therapeutic approaches for currently untreatable LSDs.
Collapse
Affiliation(s)
- Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
6
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
7
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review. Pharmaceutics 2023; 15:1167. [PMID: 37111652 PMCID: PMC10142951 DOI: 10.3390/pharmaceutics15041167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Over the past decade, the field of mesenchymal stem cell (MSC) therapy has exhibited rapid growth. Due to their regenerative, reparatory, and immunomodulatory capacities, MSCs have been widely investigated as therapeutic agents in the cell-based treatment of chronic ophthalmic pathologies. However, the applicability of MSC-based therapy is limited by suboptimal biocompatibility, penetration, and delivery to the target ocular tissues. An emerging body of research has elucidated the role of exosomes in the biological functions of MSCs, and that MSC-derived extracellular vesicles (EVs) possess anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties similar to MSCs. The recent advances in MSCs-derived exosomes can serve as solutions to the challenges faced by MSCs-therapy. Due to their nano-dimensions, MSC-derived exosomes can rapidly penetrate biological barriers and reach immune-privileged organs, allowing for efficient delivery of therapeutic factors such as trophic and immunomodulatory agents to ocular tissues that are typically challenging to target by conventional therapy and MSCs transplantation. In addition, the use of EVs minimizes the risks associated with mesenchymal stem cell transplantation. In this literature review, we focus on the studies published between 2017 and 2022, highlighting the characteristics of EVs derived from MSCs and their biological functions in treating anterior and posterior segment ocular diseases. Additionally, we discuss the potential use of EVs in clinical settings. Rapid advancements in regenerative medicine and exosome-based drug delivery, in conjunction with an increased understanding of ocular pathology and pharmacology, hold great promise for the treatment of ocular diseases. The potential of exosome-based therapies is exciting and can revolutionize the way we approach these ocular conditions.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Hamza Ahmad
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Grace Lin
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marjorie Carbonneau
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
10
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
11
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|