1
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
2
|
Zhang S, Gao YF, Zhang K, Deng GR, He GX, Gao PP, Yu YK, Yuan Y, Xing SJ, Zhao N, Zhang H, Di-Wu YC, Liu YH, Sui BD, Li Z, Ma J, Zheng CX. Integrating network pharmacology and experimental validation reveals therapeutic effects of D-mannose on NAFLD through mTOR suppression. Biochem Biophys Res Commun 2024; 715:149999. [PMID: 38678787 DOI: 10.1016/j.bbrc.2024.149999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.
Collapse
Affiliation(s)
- Sha Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying-Feng Gao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guo-Rong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Guang-Xiang He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ping-Ping Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi-Kang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu-Juan Xing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yong-Chang Di-Wu
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yi-Han Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, Beijing, 100039, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Zhe Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Yun F, Zhaorigen B, Han X, Li X, Yun S. Islet Like Cells Induced from Umbilical Cord Mesenchymal Stem Cells with Neonatal Bovine Pancreatic Mesenchymal Exosomes for Treatment of Diabetes Mellitus. Horm Metab Res 2024; 56:463-470. [PMID: 37832580 DOI: 10.1055/a-2166-4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
To investigate the safety and efficacy of the islet-like cell (cell) induced from human umbilical cord mesenchymal stem cell (UCMSC) with different methods for the treatment of diabetic animal model. UCMSCs were induced to βcells with cytokines (CY) and neonatal bovine pancreatic mesenchymal cell exosomes (Ex) combined with CY (EX+CY). The insulin secretion of UCMSC and βcell was measured with ELISA when the cells were growing in different concentrations of glucose media for different times. UCMSCs (4×105) and the same number of cells prepared with two methods were transplanted to type I diabetic rat models. UCMSCs could be induced into islet βcells by CY or EX+CY in vitro. The insulin secretion of the prepared β cells growing in 25.0 mM glucose medium was over 5-fold of that in 6.0 mM glucose. The transplantation of the βcells to type I diabetic rat models could reduce the blood glucose and prolong the survival time. The β cells induced by EX+CY had much more significant effects on decreasing blood glucose and increasing survival time (p<0.01). The cells did not affect blood sugar level and had no serious side-effects in human health. UCMSC could be induced to islet βcells with either CY or EX+CY. The transplantation of the induced islet βcells could reduce blood glucose and prolong the survival time of diabetic animal models. Although the cells induced with EX+CY had more significant effects on diabetic rats, they did not affect blood glucose level and had no serious side-effects in human health.
Collapse
Affiliation(s)
- Feiyu Yun
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Bayalige Zhaorigen
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Xia Han
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Xin Li
- Fengyuan Biosciences Company, Fengyuan Biosciences Company, Guangzhou, China
| | - Sheng Yun
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| |
Collapse
|
4
|
Wang R, Lv X, Xu W, Li X, Tang X, Huang H, Yang M, Ma S, Wang N, Niu Y. Effects of the periodic fasting-mimicking diet on health, lifespan, and multiple diseases: a narrative review and clinical implications. Nutr Rev 2024:nuae003. [PMID: 38287649 DOI: 10.1093/nutrit/nuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Dietary restriction and fasting have been recognized for their beneficial effects on health and lifespan and their potential application in managing chronic metabolic diseases. However, long-term adherence to strict dietary restrictions and prolonged fasting poses challenges for most individuals and may lead to unhealthy rebound eating habits, negatively affecting overall health. As a result, a periodic fasting-mimicking diet (PFMD), involving cycles of fasting for 2 or more days while ensuring basic nutritional needs are met within a restricted caloric intake, has gained widespread acceptance. Current research indicates that a PFMD can promote stem cell regeneration, suppress inflammation, extend the health span of rodents, and improve metabolic health, among other effects. In various disease populations such as patients with diabetes, cancer, multiple sclerosis, and Alzheimer's disease, a PFMD has shown efficacy in alleviating disease symptoms and improving relevant markers. After conducting an extensive analysis of available research on the PFMD, it is evident that its advantages and potential applications are comparable to other fasting methods. Consequently, it is proposed in this review that a PFMD has the potential to fully replace water-only or very-low-energy fasting regimens and holds promise for application across multiple diseases.
Collapse
Affiliation(s)
- Ruohua Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - He Huang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Mengxia Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Shuran Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
5
|
Lin X, Gao Y. A bibliometric analysis of the Fasting-Mimicking Diet. Front Nutr 2024; 11:1328450. [PMID: 38321992 PMCID: PMC10844425 DOI: 10.3389/fnut.2024.1328450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The Fasting-Mimicking Diet (FMD) is a nutritional strategy that involves significantly reducing calorie intake for a specific period to mimic the physiological effects of fasting while still providing the body with nutrition. Our study aimed to conduct a bibliometric study to explore the latest publishing trends and areas of intense activity within the sphere of FMD. We extracted data on FMD publications from the Web of Science Core Collection (WOSCC) database. The bibliometric analysis was conducted by WOSCC Online Analysis Platform and VOSviewer 1.6.16. In total, there were 169 publications by 945 authors from 342 organizations and 25 countries/regions, and published in 111 journals. The most productive country, organization, author, and journal were the United States, the University of Southern California, Valter D. Longo, and Nutrients, respectively. The first high-cited document was published in Ageing Research Reviews and authored by Mattson et al. In this study, they discuss the various health benefits of FMD including improved metabolic health, weight management, and even potential effects on delaying aging processes and reducing the risk of chronic diseases. In conclusion, our study is the first bibliometric analysis of the FMD. The main research hotspots and frontiers were FMD for cancer, FMD for metabolic-related diseases, and FMD for cognitive improvement. FMD may have some potential benefits for multiple diseases which should be further investigated.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li L, Li J, Guan H, Oishi H, Takahashi S, Zhang C. Human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications: applications and research advances. Int J Med Sci 2023; 20:1492-1507. [PMID: 37790847 PMCID: PMC10542192 DOI: 10.7150/ijms.87472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetes mellitus and its complications pose a major threat to global health and affect the quality of life and life expectancy of patients. Currently, the application of traditional therapeutic drugs for diabetes mellitus has great limitations and can only temporarily control blood glucose but not fundamentally cure it. Mesenchymal stem cells, as pluripotent stromal cells, have multidirectional differentiation potential, high self-renewal, immune regulation, and low immunogenicity, which provide a new idea and possible development direction for diabetes mellitus treatment. Regenerative medicine with mesenchymal stem cells treatment as the core treatment will become another treatment option for diabetes mellitus after traditional treatment. Recently, human umbilical cord mesenchymal stem cells have been widely used in basic and clinical research on diabetes mellitus and its complications because of their abundance, low ethical controversy, low risk of infection, and high proliferation and differentiation ability. This paper reviews the therapeutic role and mechanism of human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications and highlights the challenges faced by the clinical application of human umbilical cord mesenchymal stem cells to provide a more theoretical basis for the application of human umbilical cord mesenchymal stem cells in diabetes mellitus patients.
Collapse
Affiliation(s)
- Luyao Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Jicui Li
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Haifei Guan
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate 24 School of Medical Sciences, Aichi 467-8601, Nagoya, Japan
| | - Satoru Takahashi
- Institute of Basic Medical Sciences and Laboratory Animal Resource Center, University of Tsukuba, Ibaraki 305-8575, Tsukuba, Japan
| | - Chuan Zhang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| |
Collapse
|
7
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Al-Azab M, Idiiatullina E, Safi M, Hezam K. Enhancers of mesenchymal stem cell stemness and therapeutic potency. Biomed Pharmacother 2023; 162:114356. [PMID: 37040673 DOI: 10.1016/j.biopha.2023.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a range of cell types, including osteoblasts, chondrocytes, myocytes, and adipocytes. Multiple preclinical investigations and clinical trials employed enhanced MSCs-dependent therapies in treatment of inflammatory and degenerative diseases. They have demonstrated considerable and prospective therapeutic potentials even though the large-scale use remains a problem. Several strategies have been used to improve the therapeutic potency of MSCs in cellular therapy. Treatment of MSCs utilizing pharmaceutical compounds, cytokines, growth factors, hormones, and vitamins have shown potential outcomes in boosting MSCs' stemness. In this study, we reviewed the current advances in enhancing techniques that attempt to promote MSCs' therapeutic effectiveness in cellular therapy and stemness in vivo with potential mechanisms and applications.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Elina Idiiatullina
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China; Department of Therapy and Nursing, Bashkir State Medical University, Ufa 450008, Russia
| | - Mohammed Safi
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Shandong, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China; Department of Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| |
Collapse
|