1
|
Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023; 15:1814. [PMID: 37514001 PMCID: PMC10385170 DOI: 10.3390/pharmaceutics15071814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage damage and severe pain. Despite various pharmacological and surgical interventions, current therapies fail to halt OA progression, leading to high morbidity and an economic burden. Thus, there is an urgent need for alternative therapeutic approaches that can effectively address the underlying pathophysiology of OA. Extracellular Vesicles (EVs) derived from mesenchymal stromal cells (MSCs) represent a new paradigm in OA treatment. MSC-EVs are small membranous particles released by MSCs during culture, both in vitro and in vivo. They possess regenerative properties and can attenuate inflammation, thereby promoting cartilage healing. Importantly, MSC-EVs have several advantages over MSCs as cell-based therapies, including lower risks of immune reactions and ethical issues. Researchers have recently explored different strategies, such as modifying EVs to enhance their delivery, targeting efficiency, and security, with promising results. This article reviews how MSC-EVs can help treat OA and how they might work. It also briefly discusses the benefits and challenges of using MSC-EVs and talks about the possibility of allogeneic and autologous MSC-EVs for medical use.
Collapse
Affiliation(s)
- Shunling Yuan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guangfeng Li
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jinbo Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin 300110, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| |
Collapse
|
2
|
Chijimatsu R, Miwa S, Okamura G, Miyahara J, Tachibana N, Ishikura H, Higuchi J, Maenohara Y, Tsuji S, Sameshima S, Takagi K, Nakazato K, Kawaguchi K, Yamagami R, Inui H, Taketomi S, Tanaka S, Saito T. Correction to: Divergence in chondrogenic potential between in vitro and in vivo of adipose- and synovial-stem cells from mouse and human. Stem Cell Res Ther 2021; 12:479. [PMID: 34446101 PMCID: PMC8393713 DOI: 10.1186/s13287-021-02556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Miwa
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Junya Miyahara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Tachibana
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisatoshi Ishikura
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junya Higuchi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Maenohara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Shin Sameshima
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Takagi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiu Nakazato
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Kawaguchi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Yamagami
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Inui
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuji Taketomi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|