1
|
de Oliveira Figueiredo EC, Bucolo C, Eandi CM. Therapeutic innovations for geographic atrophy: A promising horizon. Curr Opin Pharmacol 2024; 78:102484. [PMID: 39243634 DOI: 10.1016/j.coph.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
This mini review spotlights the most promising treatments for geographic atrophy, the advanced form of age-related macular degeneration, often resulting in severe and irreversible vision loss. The pathophysiology is complex, and various therapeutic strategies, including anticomplement therapies, gene therapies, cell-based interventions, and artificial intelligence-driven diagnostics are discussed. Anticomplement therapies (antifactors C3 and C5) showed promise in reducing the inflammatory response and the progression of the atrophy. Gene therapies, targeting specific genetic mutations, are under development to correct underlying defects and potentially reverse disease progression. Cell-based therapies are gaining momentum, with early studies indicating encouraging results in the replacement of damaged retinal pigment epithelium cells.
Collapse
Affiliation(s)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Chiara M Eandi
- Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland; Department of Surgical Science, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Anvarinia Y, Del Mar NA, Awad AM, Hossain S, Seetharaman AT, Ravindran S, Roth S, Gangaraju R. MicroRNA-based engineered mesenchymal stem cell extracellular vesicles to treat visual deficits after blast-induced trauma. Exp Eye Res 2024; 247:110031. [PMID: 39128668 PMCID: PMC11392619 DOI: 10.1016/j.exer.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Our previous studies have shown the benefit of intravitreal injection of a mesenchymal stem cell (MSC)- derived secretome to treat visual deficits in a mild traumatic brain injury (mTBI) mouse model. In this study, we have addressed whether MSC-derived extracellular vesicles (EV) overexpressing miR424, which particularly targets neuroinflammation, show similar benefits in the mTBI model. Adult C57BL/6 mice were subjected to a 50-psi air pulse on the left side, overlying the forebrain, resulting in mTBI. Sham-blast mice were controls. Within an hour of blast injury, 3 μl (∼7.5 × 108 particles) of miR424-EVs, native-EVs, or saline was delivered intravitreally. One month later, retinal morphology was observed through optical coherence tomography (OCT); visual function was assessed using optokinetic nystagmus (OKN) and electroretinogram (ERG), followed by immunohistological analysis. A separate study in adult mice tested the dose-response of EVs for safety. Blast injury mice with saline showed decreased visual acuity compared with the sham group (0.30 ± 0.03 vs. 0.39 ± 0.01 c/d, p < 0.02), improved with miR424-EVs (0.39 ± 0.02 c/d, p < 0.01) but not native-EVs (0.33 ± 0.04 c/d, p > 0.05). Contrast sensitivity thresholds of blast mice receiving saline increased compared with the sham group (85.3 ± 5.9 vs. 19.9 ± 4.8, %, p < 0.001), rescued by miR424-EVs (23.6 ± 7.3 %, p < 0.001) and native-EVs (45.6 ± 10.7 %, p < 0.01). Blast injury decreased "b" wave amplitude compared to sham mice (94.6 ± 24.0 vs. 279.2 ± 25.3 μV, p < 0.001), improved with miR424-EVs (173.0 ± 27.2 μV, p < 0.03) and native-EVs (230.2 ± 37.2 μV, p < 0.01) with a similar decrease in a-wave amplitude in blast mice improved with both miR424-EVs and native-EVs. Immunohistology showed increased GFAP and IBA1 in blast mice with saline compared with sham (GFAP: 11.9 ± 1.49 vs. 9.1 ± 0.8, mean intensity/100,000 μm2 area, p < 0.03; IBA1: 36.08 ± 4.3 vs. 24.0 ± 1.54, mean intensity/100,000 μm2 area, p < 0.01), with no changes with native-EVs (GFAP: 12.6 ± 0.79, p > 0.05; IBA1: 32.8 ± 2.9, p > 0.05), and miR424-EV (GFAP: 13.14 ± 0.76, p > 0.05; IBA1: 31.4 ± 2.7, p > 0.05). Both native-EVs and miR424-EVs exhibited vitreous aggregation, as evidenced by particulates in the vitreous by OCT, and increased vascular structures, as evidenced by αSMA and CD31 immunostainings. The number of capillary lumens in the ganglion cell layer increased with increased particles in the eye, with native EVs showing the worst effects. In conclusion, our study highlights the promise of EV-based therapies for treating visual dysfunction caused by mTBI, with miR424-EVs showing particularly strong neuroprotective benefits. Both miR424-EVs and native-EVs provided similar protection, but issues with EV aggregation and astrogliosis or microglial/macrophage activation at the current dosage call for improved delivery methods and dosage adjustments. Future research should investigate the mechanisms behind EVs' effects and optimize miR424 delivery strategies to enhance therapeutic outcomes and reduce complications.
Collapse
Affiliation(s)
- Yasaman Anvarinia
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 769, Memphis, TN, 38163, USA.
| | - Nobel A Del Mar
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 769, Memphis, TN, 38163, USA.
| | - Ahmed M Awad
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 769, Memphis, TN, 38163, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Shahadat Hossain
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 769, Memphis, TN, 38163, USA.
| | - Amritha Tm Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 769, Memphis, TN, 38163, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago, USA.
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago, USA.
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, 930 Madison Ave, Suite 768, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Cammalleri M, Filippi L, Dal Monte M, Bagnoli P. A promising case of preclinical-clinical translation: β-adrenoceptor blockade from the oxygen-induced retinopathy model to retinopathy of prematurity. Front Physiol 2024; 15:1408605. [PMID: 38938747 PMCID: PMC11208707 DOI: 10.3389/fphys.2024.1408605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Although compartmentalization of the eye seems to promote its experimental manipulation, drug penetration to its posterior part is severely limited by hard barriers thus hindering drug development for eye diseases. In particular, angiogenesis-related retinal diseases share common mechanisms and are responsible for the majority of cases of blindness. Their prevalence is globally increasing mostly because of the increased incidence of systemic pathologies in the adult. Despite the number of preclinical findings demonstrating the efficacy of novel treatments, therapy of retinal neovascular diseases still remains confined to intravitreal anti-vascular endothelial growth factor treatments with some extension to anti-inflammatory therapy. In the mare magnum of preclinical findings aimed to develop novel avenues for future therapies, most compounds, despite their efficacy in experimental models, do not seem to meet the criteria for their therapeutic application. In particular, the groove between preclinical findings and their clinical application increases instead of decreasing and the attempt to bridging the gap between them creates intense frustration and a sense of defeat. In this complex scenario, we will discuss here the role that overactivation of the sympathetic system plays in retinal vessel proliferation in response to hypoxia using the oxygen-induced retinopathy (OIR) model. The potential application of the beta-adrenoceptor (β-AR) blockade with propranolol to the treatment of retinopathy of prematurity will be also discussed in light of preclinical findings in the OIR model and clinical trials using propranolol in preterm infants either per os or as eye drops.
Collapse
Affiliation(s)
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Shechter Y, Cohen R, Namestnikov M, Shapira A, Barak A, Barzelay A, Dvir T. Sequential Fabrication of a Three-Layer Retina-like Structure. Gels 2024; 10:336. [PMID: 38786253 PMCID: PMC11121616 DOI: 10.3390/gels10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Tissue engineering is considered a promising approach to treating advanced degenerative maculopathies such as nonexudative age-related macular degeneration (AMD), the leading cause of blindness worldwide. The retina consists of several hierarchical tissue layers, each of which is supported by a layer underneath. Each of these layers has a different morphology and requires distinct conditions for proper assembly. In fact, a prerequisite step for the assembly of each of these layers is the organization of the layer underneath. Advanced retinal degeneration includes degeneration of the other retina layers, including the choroid, the retinal pigmented epithelium (RPE), and the photoreceptors. Here, we report a step-by-step fabrication process of a three-layer retina-like structure. The process included the 3D printing of a choroid-like structure in an extracellular matrix (ECM) hydrogel, followed by deposition of the RPE monolayer. After the formation of the blood vessel-RPE interface, the photoreceptor cells were deposited to interact with the RPE layer. At the end of the fabrication process, each layer was characterized for its morphology and expression of specific markers, and the integration of the three-layer retina was evaluated. We envision that such a retina-like structure may be able to attenuate the deterioration of a degenerated retina and improve engraftment and regeneration. This retinal implant may potentially be suitable for a spectrum of macular degenerative diseases for which there are currently no cures and may save millions from complete blindness.
Collapse
Affiliation(s)
- Yahel Shechter
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.S.); (R.C.); (M.N.); (A.S.)
| | - Roni Cohen
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.S.); (R.C.); (M.N.); (A.S.)
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Namestnikov
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.S.); (R.C.); (M.N.); (A.S.)
| | - Assaf Shapira
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.S.); (R.C.); (M.N.); (A.S.)
| | - Adiel Barak
- Division of Ophthalmology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aya Barzelay
- Division of Ophthalmology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dvir
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.S.); (R.C.); (M.N.); (A.S.)
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Yalla GR, Kuriyan AE. Cell therapy for retinal disease. Curr Opin Ophthalmol 2024; 35:178-184. [PMID: 38276971 DOI: 10.1097/icu.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW This review presents an update on completed stem cell therapy trials aimed at retinal diseases. RECENT FINDINGS In recent years, several clinical trials have been conducted examining the safety and role of cell therapy in diseases, including age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. Studies have utilized a variety of cell lines, modes of delivery, and immunosuppressive regimens. The prevalence of fraudulent cell therapy clinics poses threats to patients. SUMMARY Clinical trials have begun to characterize the safety of cell therapy in retinal disease. While studies have described the potential benefits of cell therapy, larger studies powered to evaluate this efficacy are required to continue progressing toward preventing retinal disease. Nonapproved cell therapy clinics require regulation and patient education to avoid patient complications.
Collapse
Affiliation(s)
- Goutham R Yalla
- Wills Eye Hospital, Mid Atlantic Retina
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
7
|
Khaboushan AS, Ebadpour N, Moghadam MMJ, Rezaee Z, Kajbafzadeh AM, Zolbin MM. Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis. J Transl Med 2024; 22:227. [PMID: 38431596 PMCID: PMC10908175 DOI: 10.1186/s12967-024-05016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Retinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs. METHODS PubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed. RESULTS Overall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05). CONCLUSION The findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ebadpour
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Johari Moghadam
- Department of Ophthalmology & Vision Science, Tschannen Eye Institute, University of California, Davis, Sacramento, CA, USA
| | - Zahra Rezaee
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
8
|
Turner L, Martinez JR, Najjar S, Arachchilage TR, Sahrai V, Wang JC. Regulatory claims made by US businesses engaged in direct-to-consumer marketing of purported stem cell treatments and exosome therapies. Regen Med 2023; 18:857-868. [PMID: 37867326 DOI: 10.2217/rme-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Aim: This study investigated whether US businesses engaged in direct-to-consumer online marketing of purported stem cell therapies and stem cell-derived exosome products made claims concerning the regulatory status of these interventions. Methods: We used data mining and content analysis of company websites to examine regulatory-related representations made by US businesses marketing stem cell treatments and exosome therapies. Results: More than two thirds of such businesses did not make explicit representations about the regulatory status of their marketed products. Businesses that made claims about the regulatory status of the stem cell and exosome products they sold used range of representations concerning the legal standing of these interventions. Conclusion: The absence of information addressing the regulatory status of stem cell interventions and exosome products and the use of what appeared to be inaccurate information concerning the regulatory status of numerous products likely complicates efforts by customers to make informed health-related decisions.
Collapse
Affiliation(s)
- Leigh Turner
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
- Department of Health, Society, & Behavior, University of California Irvine, Irvine, CA 92697-3957, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697-3957, USA
| | - Juan Ramon Martinez
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Shemms Najjar
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Thevin Rajapaksha Arachchilage
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Victoria Sahrai
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Jia Chieng Wang
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| |
Collapse
|
9
|
Turner L, Martinez JR, Najjar S, Arachchilage TR, Sahrai V, Wang JC. Safety and efficacy claims made by US businesses marketing purported stem cell treatments and exosome therapies. Regen Med 2023; 18:781-793. [PMID: 37795701 DOI: 10.2217/rme-2023-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Aim: Examining websites of US businesses engaged in direct-to-consumer advertising of putative stem cell treatments and exosome therapies, this study investigated the marketing claims such companies make about the purported safety and efficacy of these products. Methods: Data mining and content analysis of company websites were used to identify and analyze safety and efficacy claims. Results: Of the 978 businesses analyzed, less than half the companies made identifiable claims about the safety and efficacy of their advertised stem cell and exosome products. We also explored how companies framed the stem cell and exosome products they promoted. Representations ranged from assertions that such products are unproven and investigational to claims they constituted cures. Most advertising frames fell between these poles. Conclusion: Some businesses include in their marketing representations claims about the safety and efficacy of advertised products. Businesses that did not make such assertions use other techniques to attract prospective clients.
Collapse
Affiliation(s)
- Leigh Turner
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
- Department of Health, Society, & Behavior, University of California, Irvine, CA 92697-3957, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Juan Ramon Martinez
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Shemms Najjar
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Thevin Rajapaksha Arachchilage
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Victoria Sahrai
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Jia Chieng Wang
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| |
Collapse
|
10
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
11
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
12
|
Becherucci V, Bacci GM, Marziali E, Sodi A, Bambi F, Caputo R. The New Era of Therapeutic Strategies for the Treatment of Retinitis Pigmentosa: A Narrative Review of Pathomolecular Mechanisms for the Development of Cell-Based Therapies. Biomedicines 2023; 11:2656. [PMID: 37893030 PMCID: PMC10604477 DOI: 10.3390/biomedicines11102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Retinitis pigmentosa, defined more properly as cone-rod dystrophy, is a paradigm of inherited diffuse retinal dystrophies, one of the rare diseases with the highest prevalence in the worldwide population and one of the main causes of low vision in the pediatric and elderly age groups. Advancements in and the understanding of molecular biology and gene-editing technologies have raised interest in laying the foundation for new therapeutic strategies for rare diseases. As a consequence, new possibilities for clinicians and patients are arising due to the feasibility of treating such a devastating disorder, reducing its complications. The scope of this review focuses on the pathomolecular mechanisms underlying RP better to understand the prospects of its treatment using innovative approaches.
Collapse
Affiliation(s)
- Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|
13
|
Moran AL, Fehilly JD, Blacque O, Kennedy BN. Gene therapy for RAB28: What can we learn from zebrafish? Vision Res 2023; 210:108270. [PMID: 37321111 DOI: 10.1016/j.visres.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The eye is particularly suited to gene therapy due to its accessibility, immunoprivileged state and compartmentalised structure. Indeed, many clinical trials are underway for therapeutic gene strategies for inherited retinal degenerations (IRDs). However, as there are currently 281 genes associated with IRD, there is still a large unmet need for effective therapies for the majority of IRD-causing genes. In humans, RAB28 null and hypomorphic alleles cause autosomal recessive cone-rod dystrophy (arCORD). Previous work demonstrated that restoring wild type zebrafish Rab28 via germline transgenesis, specifically in cone photoreceptors, is sufficient to rescue the defects in outer segment phagocytosis (OSP) observed in zebrafish rab28-/- knockouts (KO). This rescue suggests that gene therapy for RAB28-associated CORD may be successful by RAB28 gene restoration to cones. It also inspired us to critically consider the scenarios in which zebrafish can provide informative preclinical data for development of gene therapies. Thus, this review focuses on RAB28 biology and disease, and delves into both the opportunities and limitations of using zebrafish as a model for both gene therapy development and as a diagnostic tool for patient variants of unknown significance (VUS).
Collapse
Affiliation(s)
- Ailis L Moran
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John D Fehilly
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Oliver Blacque
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Ail D, Nava D, Hwang IP, Brazhnikova E, Nouvel-Jaillard C, Dentel A, Joffrois C, Rousseau L, Dégardin J, Bertin S, Sahel JA, Goureau O, Picaud S, Dalkara D. Inducible nonhuman primate models of retinal degeneration for testing end-stage therapies. SCIENCE ADVANCES 2023; 9:eadg8163. [PMID: 37531424 PMCID: PMC10396314 DOI: 10.1126/sciadv.adg8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.
Collapse
Affiliation(s)
- Divya Ail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Diane Nava
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - In Pyo Hwang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Alexandre Dentel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, F-75013 Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Lionel Rousseau
- ESYCOM, Université Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Stephane Bertin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
15
|
Moghadam Fard A, Mirshahi R, Naseripour M, Ghasemi Falavarjani K. Stem Cell Therapy in Stargardt Disease: A Systematic Review. J Ophthalmic Vis Res 2023; 18:318-327. [PMID: 37600916 PMCID: PMC10432931 DOI: 10.18502/jovr.v18i3.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/26/2023] [Indexed: 08/22/2023] Open
Abstract
This article aimed to review current literature on the safety and efficacy of stem cell therapy in Stargardt disease. A comprehensive literature search was performed, and two animal and eleven human clinical trials were retrieved. These studies utilized different kinds of stem cells, including human or mouse embryonic stem cells, mesenchymal stem cells, bone marrow mononuclear fraction, and autologous bone marrow-derived stem cells. In addition, different injection techniques including subretinal, intravitreal, and suprachoroidal space injections have been evaluated. Although stem cell therapy holds promise in improving visual function in patients with Stargardt disease, further investigation is needed to determine the long-term benefits, safety, and efficacy in determining the best delivery method and selecting the most appropriate stem cell type.
Collapse
Affiliation(s)
- Atousa Moghadam Fard
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Iovino C, Rosolia A, Damiano L, Iodice CM, Di Iorio V, Testa F, Simonelli F. Pars Plana Vitrectomy in Inherited Retinal Diseases: A Comprehensive Review of the Literature. Life (Basel) 2023; 13:1241. [PMID: 37374028 DOI: 10.3390/life13061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of clinically and genetically heterogeneous disorders that may be complicated by several vitreoretinal conditions requiring a surgical approach. Pars plana vitrectomy (PPV) stands as a valuable treatment option in these cases, but its application in eyes with such severely impaired chorioretinal architectures remains controversial. Furthermore, the spreading of gene therapy and the increasing use of retinal prostheses will end up in a marked increase in demand for PPV surgery for IRD patients. The retinal degeneration that typically affects patients with hereditary retinal disorders may influence the execution of the surgery and the expected results. Considering the importance of PPV application in IRD-related complications, it is fundamental to try to understand from the literature what is adequate and safe in posterior eye segment surgery. Use of dyes, light toxicity, and risk of wounding scar development have always been themes that discourage the execution of vitreoretinal surgery in already impaired eyes. Therefore, this review aims to comprehensively summarize all PPV applications in different IRDs, highlighting the favorable results as well as the potential precautions to consider when performing vitreoretinal surgery in these eyes.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Andrea Rosolia
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Luciana Damiano
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Clemente Maria Iodice
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
17
|
Collin J, Hasoon MSR, Zerti D, Hammadi S, Dorgau B, Clarke L, Steel D, Hussain R, Coxhead J, Lisgo S, Queen R, Lako M. Single-cell RNA sequencing reveals transcriptional changes of human choroidal and retinal pigment epithelium cells during fetal development, in healthy adult and intermediate age-related macular degeneration. Hum Mol Genet 2023; 32:1698-1710. [PMID: 36645183 PMCID: PMC10162434 DOI: 10.1093/hmg/ddad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Megan S R Hasoon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
- Microscopy Centre and Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L'aquila 67100, Italy
| | - Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Lucy Clarke
- Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, NE1 4LP, UK
| | - David Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| |
Collapse
|
18
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|
19
|
Partin S, Westfall E, Sanda G, Branham K, Muir K, Bellcross C, Jain N. Readability, Content, and Accountability Assessment of Online Health Information for Retinitis Pigmentosa & Retinitis Pigmentosa Treatment Options. Ophthalmic Genet 2023; 44:43-48. [PMID: 36239593 DOI: 10.1080/13816810.2022.2135113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE New therapies for retinitis pigmentosa (RP) have led to patients desiring more information about their disease. We assessed the readability, content, and accountability of online health information for RP and its treatments. METHODS Two internet queries were performed: one pertaining to the condition RP, and another pertaining to treatments of RP. Three analyses were performed on the top search results that met eligibility criteria: (1) A readability analysis produced an average reading level; (2) A content analysis was conducted to score each source on the accuracy, completeness, clarity, and organization of the content; and (3) An accountability analysis was performed to evaluate adherence to accountability benchmarks, including authorship, attribution, disclosure, and currency. RESULTS The mean reading level was 12.0 (SD = 3.2, 95% CI = 11.0-13.0) for the 8 RP webpages and 12.5 (SD = 3.1, 95% CI = 11.7-13.4) for the 10 RP treatment webpages. The mean content score for RP sites was 21.3 of 32 points (SD = 4.1, 95% CI = 19.5-23.0). The mean content score for RP treatment sites was 5.5 out of 16 points (SD = 3.7, 95% CI = 4.1-6.9). The inter-rater reliability was 0.973 (Cronbach's alpha). For RP sites, the mean accountability score was 2.6 out of 4 points (SD = 0.9, 95% CI = 1.9-3.4). For RP treatment sites, the mean accountability score was 2 out of 4 points (SD = 0.9, 95% CI = 1.4-2.6). CONCLUSION Our data suggest that the online information available to patients regarding RP and RP treatment options exceeds the AMA-recommended sixth-grade reading level and contains gaps in content relevant to patients.
Collapse
Affiliation(s)
- Stacy Partin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor Westfall
- Department of Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Gregory Sanda
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Kelly Muir
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Cecelia Bellcross
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
20
|
O’Brien P, Enstone A, Bridge D, Wyn R, Banhazi J. Elicitation of Health State Utility Values in Retinitis Pigmentosa by Time Trade-off in the United Kingdom. Clinicoecon Outcomes Res 2023; 15:29-39. [PMID: 36687800 PMCID: PMC9850830 DOI: 10.2147/ceor.s385094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Introduction Retinitis pigmentosa (RP) is an inherited retinal pathology associated with "night blindness" and progressive loss of peripheral vision, in some cases leading to complete blindness. Health state utility values are required for activities such as modelling disease burden or the cost-effectiveness of new interventions. The current study aimed to generate utility values for health states of varying levels of functional vision in RP, with members of the general public in the UK. Methods Five health states were defined according to standard clinical measures of visual ability. Health state descriptions were developed following interviews with patients with RP in the UK (n=5). Further interviews were conducted for confirmation with healthcare professionals with specific experience of managing patients with RP in the UK (n=2). Interviews with members of the general public in the UK were conducted to value health states. A time trade-off (TTO) process based on the established Measurement and Valuation of Health (MVH) protocol was used. Due to the ongoing COVID-19 pandemic, all interviews were web-enabled and conducted 1:1 by a trained moderator. Results In total, n=110 TTO interviews were conducted with members of the UK general public. Mean TTO utility values followed the logical and expected order, with increasing visual impairment leading to decreased utility. Mean values varied between 0.78 ± 0.20 ("moderate impairment"), and 0.33 ± 0.26 ("hand motion" to "no light perception"). Supplementary visual analogue scale (VAS) scores also followed the logical and expected order: mean VAS values varied between 47.95 ± 15.38 ("moderate impairment") and 17.22 ± 12.49 in ("hand motion" to "no light perception"). Discussion These data suggest that individuals living with RP have substantially impaired quality of life. Utility values for RP have been elicited here using a method and sample that is suitable for economic modelling and health technology assessment purposes.
Collapse
Affiliation(s)
- Paul O’Brien
- Novartis Ireland, Dublin, Ireland,Correspondence: Paul O’Brien, Email
| | | | | | - Robin Wyn
- Adelphi Values PROVE, Bollington, UK
| | | |
Collapse
|
21
|
Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy. Int J Mol Sci 2023; 24:ijms24020913. [PMID: 36674425 PMCID: PMC9860961 DOI: 10.3390/ijms24020913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1β, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-β1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-β axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.
Collapse
|
22
|
Impaired Bestrophin Channel Activity in an iPSC-RPE Model of Best Vitelliform Macular Dystrophy (BVMD) from an Early Onset Patient Carrying the P77S Dominant Mutation. Int J Mol Sci 2022; 23:ijms23137432. [PMID: 35806438 PMCID: PMC9266689 DOI: 10.3390/ijms23137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Best Vitelliform Macular dystrophy (BVMD) is the most prevalent of the distinctive retinal dystrophies caused by mutations in the BEST1 gene. This gene, which encodes for a homopentameric calcium-activated ion channel, is crucial for the homeostasis and function of the retinal pigment epithelia (RPE), the cell type responsible for recycling the visual pigments generated by photoreceptor cells. In BVMD patients, mutations in this gene induce functional problems in the RPE cell layer with an accumulation of lipofucsin that evolves into cell death and loss of sight. In this work, we employ iPSC-RPE cells derived from a patient with the p.Pro77Ser dominant mutation to determine the correlation between this variant and the ocular phenotype. To this purpose, gene and protein expression and localization are evaluated in iPSC-RPE cells along with functional assays like phagocytosis and anion channel activity. Our cell model shows no differences in gene expression, protein expression/localization, or phagocytosis capacity, but presents an increased chloride entrance, indicating that the p.Pro77Ser variant might be a gain-of-function mutation. We hypothesize that this variant disturbs the neck region of the BEST1 channel, affecting channel function but maintaining cell homeostasis in the short term. This data shed new light on the different phenotypes of dominant mutations in BEST1, and emphasize the importance of understanding its molecular mechanisms. Furthermore, the data widen the knowledge of this pathology and open the door for a better diagnosis and prognosis of the disease.
Collapse
|