1
|
Ji W, Sun L, Wang D, Zhu W. Mesenchymal stem cells alleviate inflammatory responses through regulation of T-cell subsets. Eur J Pharmacol 2024; 983:176996. [PMID: 39277095 DOI: 10.1016/j.ejphar.2024.176996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Immune-mediated inflammatory disease (IMID) is a complex disorder characterized by excessive immune responses involving T cells and their subsets, leading to direct tissue damage. T cells can be broadly categorized into CD4+ T cells and CD8+ T cells. CD4+ T cells are composed of several subsets, including T helper (Th)1, Th2, Th9, Th17, Th22, follicular helper T cells (Tfhs), and regulatory T cells (Tregs), while effector CD8+ T cells consist mainly of cytotoxic T cells (CTLs). Current therapies for IMID are ineffective, prompting exploration into mesenchymal stem cells (MSCs) as a promising clinical treatment due to their immunomodulatory effects and self-renewal potential. Recent studies have shown that MSCs can suppress T cells through direct cell-to-cell contact or secretion of soluble cytokines. Nevertheless, the precise effects of MSCs on T cell subsets remain inadequately defined. In this review, we summarize the most recent studies that have examined how MSCs modulate one or more effector T-cell subsets and the mechanisms behind these modifications in vitro and several mouse models of clinical inflammation. This also provides theoretical support and novel insights into the efficacy of clinical treatments involving MSCs. However, the efficacy of MSC therapies in clinical models of inflammation varies, showing effective remission in most cases, but also with exacerbation of T-cell-mediated inflammatory damage in some instances.
Collapse
Affiliation(s)
- Weimeng Ji
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital Ofjiangsu University, Suzhou, Jiangsu, 215399, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Wei Zhu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China.
| |
Collapse
|
2
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Rivas IL, Soltero-Rivera M, Vapniarsky N, Arzi B. Stromal cell therapy in cats with feline chronic gingivostomatitis: current perspectives and future direction. J Feline Med Surg 2023; 25:1098612X231185395. [PMID: 37548494 PMCID: PMC10811994 DOI: 10.1177/1098612x231185395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful, immune-mediated, oral mucosal inflammatory disease in cats. The etiology of FCGS remains unclear, with evidence pointing potentially toward a viral cause. Full-mouth tooth extraction is the current standard of care, and cats that are non-responsive to extraction therapy may need lifelong medical management and, in some cases, euthanasia. Adipose-derived mesenchymal stromal cells (adMSCs) have been demonstrated to have advantages in the treatment and potentially the cure of non-responsive FCGS in cats. Therefore, adMSCs have attracted a series of ongoing clinical trials in the past decade. AdMSC therapy immediately after full-mouth tooth extraction was not explored, and we postulate that it may benefit the overall success rate of FCGS therapy. Here, we aim to summarize the current knowledge and impact of adMSCs for the therapeutic management of FCGS and to suggest a novel modified approach to further increase the efficacy of FCGS treatment in cats.
Collapse
Affiliation(s)
- Iris L Rivas
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|