1
|
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a Therapeutic Target in Breast Tumors: The Cancer stem cell perspective. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2358648. [PMID: 39006309 PMCID: PMC7616179 DOI: 10.1080/27694127.2024.2358648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Anubhav Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| |
Collapse
|
2
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024:1-22. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Keshavarz M, Dianat-Moghadam H, Ghorbanhosseini SS, Sarshari B. Oncolytic virotherapy improves immunotherapies targeting cancer stemness in glioblastoma. Biochim Biophys Acta Gen Subj 2024; 1868:130662. [PMID: 38901497 DOI: 10.1016/j.bbagen.2024.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Despite advances in cancer therapies, glioblastoma (GBM) remains the most resistant and recurrent tumor in the central nervous system. GBM tumor microenvironment (TME) is a highly dynamic landscape consistent with alteration in tumor infiltration cells, playing a critical role in tumor progression and invasion. In addition, glioma stem cells (GSCs) with self-renewal capability promote tumor recurrence and induce therapy resistance, which all have complicated eradication of GBM with existing therapies. Oncolytic virotherapy is a promising field of therapy that can kill tumor cells in a targeted manner. Manipulated oncolytic viruses (OVs) improve cancer immunotherapy by directly lysis tumor cells, infiltrating antitumor cells, inducing immunogenic cell death, and sensitizing immune-resistant TME to an immune-responsive hot state. Importantly, OVs can target stemness-driven GBM progression. In this review, we will discuss how OVs as a therapeutic option target GBM, especially the GSC subpopulation, and induce immunogenicity to remodel the TME, which subsequently enhances immunotherapies' efficiency.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrang Sarshari
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tsui YM, Tian L, Lu J, Ma H, Ng IOL. Interplay among extracellular vesicles, cancer stemness and immune regulation in driving hepatocellular carcinoma progression. Cancer Lett 2024; 597:217084. [PMID: 38925362 DOI: 10.1016/j.canlet.2024.217084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jingyi Lu
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Alqarni A, Jasim SA, Altalbawy FMA, Kaur H, Kaur I, Rodriguez-Benites C, Deorari M, Alwaily ER, Al-Ani AM, Redhee AH. Challenges and opportunities for cancer stem cell-targeted immunotherapies include immune checkpoint inhibitor, cancer stem cell-dendritic cell vaccine, chimeric antigen receptor immune cells, and modified exosomes. J Biochem Mol Toxicol 2024; 38:e23719. [PMID: 38764138 DOI: 10.1002/jbt.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.
Collapse
Affiliation(s)
- Abdullah Alqarni
- Department of Diagnostics Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Harpreet Kaur
- School of Basic and Applied Sciences, Shobhit University, Gangoh, India
- Department of Health and Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | - Carlos Rodriguez-Benites
- Departamento Académico de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi Qar, Iraq
| | - Ahmed M Al-Ani
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed H Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Chen Y, Qu B, Zheng K, Liu Y, Lu L, Zhang X. Global research landscape and trends of cancer stem cells from 1997 to 2023: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38125. [PMID: 38758889 PMCID: PMC11098227 DOI: 10.1097/md.0000000000038125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Cancer stem cells (CSCs) are a subset of cells with self-renewal ability and tumor generating potential. Accumulated evidence has revealed that CSCs were shown to contribute to tumorigenesis, metastasis, recurrence and resistance to chemoradiotherapy. Therefore, CSCs were regarded as promising therapeutic targets in cancer. This study is the first to reveal the development process, research hotspots, and trends of entire CSCs research field through bibliometric methods. All relevant publications on CSCs with more than 100 citations (notable papers) and the 100 most cited papers (top papers) during 1997 to 2023 were extracted and analyzed. Cancer research published the largest number of papers (184 papers). The USA accounted for the most publications (1326 papers). Rich, JN was the author with the most publications (56 papers) and the highest M-index (3.111). The most contributive institution was the University of Texas System (164 papers). Before 2007, research mainly focused on the definition and recognition of CSCs. Between 2007 and 2016, with the emergence of the terms such as "sonic hedgehog," "metabolism," "oxidative phosphorylation," and "epithelial mesenchymal transition," research began to shift toward exploring the mechanisms of CSCs. In 2016, the focus transitioned to the tumor microenvironment and the ecological niches. The analysis of papers published in major journals since 2021 showed that "transcription," "inhibition," and "chemoresistance" emerged as new focused issues. In general, the research focus has gradually shifted from basic biology to clinical transformation. "Tumor microenvironment" and "chemo-resistance" should be given more attention in the future.
Collapse
Affiliation(s)
- Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Keke Zheng
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Yanhao Liu
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
8
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Liu Y, Wang H. Biomarkers and targeted therapy for cancer stem cells. Trends Pharmacol Sci 2024; 45:56-66. [PMID: 38071088 PMCID: PMC10842814 DOI: 10.1016/j.tips.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cancer cells with capabilities of self-renewal, differentiation, and tumorigenicity, and play a critical role in driving tumor heterogeneity that evolves insensitivity to therapeutics. For these reasons, extensive efforts have been made to identify and target CSCs to potentially improve the antitumor efficacy of therapeutics. While progress has been made to uncover certain CSC-associated biomarkers, the identification of CSC-specific markers, especially the targetable ones, remains a significant challenge. Here we provide an overview of the unique signaling and metabolic pathways of CSCs, summarize existing CSC biomarkers and CSC-targeted therapies, and discuss strategies to further differentiate CSCs from non-stem cancer cells and healthy cells for the development of enhanced CSC-targeted therapies.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Omran MM, Fouda MS, Mekkawy SA, Tabll AA, Abdelaziz AG, Omran AM, Emran TM. Molecular Biomarkers and Signaling Pathways of Cancer Stem Cells in Colorectal Cancer. Technol Cancer Res Treat 2024; 23:15330338241254061. [PMID: 38794896 PMCID: PMC11128179 DOI: 10.1177/15330338241254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2018] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequently found cancer in the world, and it is frequently discovered when it is already far along in its development. About 20% of cases of CRC are metastatic and incurable. There is more and more evidence that colorectal cancer stem cells (CCSCs), which are in charge of tumor growth, recurrence, and resistance to treatment, are what make CRC so different. Because we know more about stem cell biology, we quickly learned about the molecular processes and possible cross-talk between signaling pathways that affect the balance of cells in the gut and cancer. Wnt, Notch, TGF-β, and Hedgehog are examples of signaling pathway members whose genes may change to produce CCSCs. These genes control self-renewal and pluripotency in SCs and then decide the function and phenotype of CCSCs. However, in terms of their ability to create tumors and susceptibility to chemotherapeutic drugs, CSCs differ from normal stem cells and the bulk of tumor cells. This may be the reason for the higher rate of cancer recurrence in patients who underwent both surgery and chemotherapy treatment. Scientists have found that a group of uncontrolled miRNAs related to CCSCs affect stemness properties. These miRNAs control CCSC functions like changing the expression of cell cycle genes, metastasis, and drug resistance mechanisms. CCSC-related miRNAs mostly control signal pathways that are known to be important for CCSC biology. The biomarkers (CD markers and miRNA) for CCSCs and their diagnostic roles are the main topics of this review study.
Collapse
Affiliation(s)
- Mohamed M. Omran
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manar S. Fouda
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara A. Mekkawy
- Molecular Biotechnology Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Azza M. Omran
- Clinical Pharma Program, Faculty of Pharmacy, Delta University, Dakahlia, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| |
Collapse
|
12
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
13
|
Casagrande N, Borghese C, Corona G, Aldinucci D, Altaf M, Sulaiman AAA, Isab AA, Ahmad S, Peedikakkal AMP. Dinuclear gold(I) complexes based on carbene and diphosphane ligands: bis[2-(dicyclohexylphosphano)ethyl]amine complex inhibits the proteasome activity, decreases stem cell markers and spheroid viability in lung cancer cells. J Biol Inorg Chem 2023; 28:751-766. [PMID: 37955736 DOI: 10.1007/s00775-023-02025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023]
Abstract
Three new dinuclear gold(I) complexes (1-3) containing a carbene (1,3-Bis(2,6-di-isopropylphenyl)imidazol-2-ylidene (IPr)) and diphosphane ligands [bis(1,2-diphenylphosphano)ethane (Dppe), bis(1,3-diphenylphosphano)propane (Dppp) and bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA)], were synthesized and characterized by elemental analysis and, ESI-MS, mid FT-IR and NMR spectroscopic methods. The structures of complexes 2 and 3 were determined by X-ray crystallography, which revealed that the complexes are dinuclear having gold(I) ions linearly coordinated. The anticancer activities of the complexes (1-3) were evaluated in lung (A549), breast (MC-F7), prostate (PC-3), osteosarcoma (MG-63) and ovarian (A2780 and A2780cis) cancer models. Growth inhibition by the new complexes was higher than cisplatin in all cell lines tested. The mechanism of action of complex 3 was investigated in A549 cells using 2-dimensional (2D) models and 3D-multicellular tumor spheroids. Treatment of A549 cells with complex 3 caused: the induction of apoptosis and the generation of reactive oxygen species; the cell cycle arrest in the G0/G1 phase; the inhibition of both the proteasome and the NF-kB activity; the down-regulation of lung cancer stem cell markers (NOTCH1, CD133, ALDH1 and CD44). Complex 3 was more active than cisplatin also in 3D models of A549 lung cancer cells.
Collapse
Affiliation(s)
- Naike Casagrande
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Cinzia Borghese
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Donatella Aldinucci
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy.
| | - Muhammad Altaf
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Adam A A Sulaiman
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Abdul Malik P Peedikakkal
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
14
|
Yang Y, Zhu G, Yang L, Yang Y. Targeting CD24 as a novel immunotherapy for solid cancers. Cell Commun Signal 2023; 21:312. [PMID: 37919766 PMCID: PMC10623753 DOI: 10.1186/s12964-023-01315-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023] Open
Abstract
Cluster of differentiation 24 (CD24), a mucin-like highly glycosylated molecule has been extensively studied as a cancer stem cell marker in a variety of solid cancers. The functional role of CD24 is either fulfilled by combining with ligands or participating in signal transduction, which mediate the initiation and progression of neoplasms. Recently, CD24 was also described as an innate immune checkpoint with apparent significance in several types of solid cancers. Herein, we review the current understanding of the molecular fundamentals of CD24, the role of CD24 in tumorigenesis and cancer progression, the possibility as a promising therapeutic target and summarized different therapeutic agents or strategies targeting CD24 in solid cancers. Video Abstract.
Collapse
Affiliation(s)
- Yan Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Guangming Zhu
- Clinical Laboratory, The First People's Hospital of Taian, Taian 271000, Shandong, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, Zhengzhou, 450052, Henan, China
| | - Yun Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
15
|
Dorna D, Paluszczak J. Targeting cancer stem cells as a strategy for reducing chemotherapy resistance in head and neck cancers. J Cancer Res Clin Oncol 2023; 149:13417-13435. [PMID: 37453969 PMCID: PMC10587253 DOI: 10.1007/s00432-023-05136-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, including alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies. METHODS This narrative review was prepared based on the search of the PubMed database for relevant papers. RESULTS Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of certain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for chemoresistance induction. CONCLUSIONS Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| |
Collapse
|
16
|
Noraldeen SAM, Rasulova I, Lalitha R, Hussin F, Alsaab HO, Alawadi AH, Alsaalamy A, Sayyid NH, Alkhafaji AT, Mustafa YF, Shayan SK. Involving stemness factors to improve CAR T-cell-based cancer immunotherapy. Med Oncol 2023; 40:313. [PMID: 37779152 DOI: 10.1007/s12032-023-02191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Treatment with chimeric antigen receptor (CAR) T cells indicated remarkable clinical responses with liquid cancers such as hematological malignancies; however, their therapeutic efficacy faced with many challenges in solid tumors due to severe toxicities, antigen evasion, restricted and limited tumor tissue trafficking and infiltration, and, more importantly, immunosuppressive tumor microenvironment (TME) factors that impair the CAR T-cell function adds support survival of cancer stem cells (CSCs), responsible for tumor recurrence and resistance to current cancer therapies. Therefore, in-depth identification of TME and development of more potent CAR platform targeting CSCs may overcome the raised challenges, as presented in this review. We also discuss recent stemness-based innovations in CAR T-cell production and engineering to improve their efficacy in vivo, and finally, we propose solutions and strategies such as oncolytic virus-based therapy and combination therapy to revive the function of CAR T-cell therapy, especially in TME of solid tumors in future.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., 100007, Tashkent, Uzbekistan
| | - Repudi Lalitha
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hyderabad, Telangana, India.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, 21944, Taif, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Nidhal Hassan Sayyid
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
17
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Dianat-Moghadam H, Nedaeinia R, Keshavarz M, Azizi M, Kazemi M, Salehi R. Immunotherapies targeting tumor vasculature: challenges and opportunities. Front Immunol 2023; 14:1226360. [PMID: 37727791 PMCID: PMC10506263 DOI: 10.3389/fimmu.2023.1226360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Wu HT, Wu Z, Hou YY, Fang ZX, Wu BX, Deng Y, Cui YK, Liu J. SIX4, a potential therapeutic target for estrogen receptor-positive breast cancer patients, is associated with low promoter methylation level. Epigenomics 2023; 15:911-925. [PMID: 37905439 DOI: 10.2217/epi-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Aim: To investigate SIX4 in breast cancer. Methods: Publicly available online tools were used to analyze the expression, methylation and prognostic significance of SIX4 in breast cancer, as well as its immunohistochemistry. Results: High SIX4 levels were associated with low SIX4 promoter methylation, especially in estrogen receptor-positive breast cancer. Increased SIX4 was related to advanced stage and decreased immune infiltration. Gene set enrichment analysis found that the SIX4-correlated genes were enriched in transcriptional processing and immune response. Patients with high SIX4 expression tended to have poor survival, especially those with estrogen receptor-positive breast cancer. Conclusion: High SIX4 expression in breast cancer plays an oncogenic role, promoting the development of malignancies through suppressing the immune response, especially in luminal subtypes, and is associated with a low promoter methylation level.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Laboratory for Diagnosis & Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Laboratory for Diagnosis & Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Laboratory for Diagnosis & Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- Laboratory for Diagnosis & Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
20
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
21
|
Song Y, Ma J, Fang L, Tang M, Gao X, Zhu D, Liu W. Endoplasmic reticulum stress-related gene model predicts prognosis and guides therapies in lung adenocarcinoma. BMC Bioinformatics 2023; 24:255. [PMID: 37328788 DOI: 10.1186/s12859-023-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The prognosis and survival of lung adenocarcinoma (LUAD) patients are still not promising despite recent breakthroughs in treatment. Endoplasmic reticulum stress (ERS) is a self-protective mechanism resulting from an imbalance in quality control of unfolded proteins when cells are stressed, which plays an active role in lung cancer development, but the relationship between ERS and the pathological characteristics and clinical prognosis of LUAD patients remains unclear. METHODS LASSO and Cox regression were applied based on sequencing information to construct the model, which was validated to be robust. The risk scores of the patients were calculated using the formula provided by the model, and the patients were divided into high and low-risk groups according to the median cut-off of risk scores. Cox regression analysis identifies independent prognostic factors for these patients, and enrichment analysis of prognosis-related genes was also performed. The relationship between risk scores and tumor mutation burden (TMB), cancer stem cell index, and drug sensitivity was explored. RESULTS We constructed a 13-gene prognostic model for LUAD patients. Patients in the high-risk group had worse overall survival, lower immune score and ESTIMATE score, higher TMB, higher cancer stem cell index, and higher sensitivity to conventional chemotherapeutic agents. In addition, we constructed a nomogram that predicts 5-year survival in LUAD patients, which helps clinicians to foresee the prognosis from a new perspective. CONCLUSIONS Our results highlight the association of ERS with LUAD and the potential use of ERS in guiding treatment.
Collapse
Affiliation(s)
- Yuqi Song
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Dongshan Zhu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
22
|
Jalil AT, Abdulhadi MA, Al-Marzook FA, Hizam MM, Abdulameer SJ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. NK cells direct the perspective approaches to cancer immunotherapy. Med Oncol 2023; 40:206. [PMID: 37318610 DOI: 10.1007/s12032-023-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/30/2023] [Indexed: 06/16/2023]
Abstract
Natural killer (NK) cells are innate immune cells with cytotoxic potentials to kill cancerous cells in several mechanisms, which could be implied for cancer therapy. While potent, their antitumor activities specially for solid tumors impaired by inadequate tumor infiltration, suppressive tumor microenvironment, cancer-associated stroma cells, and tumor-supportive immune cells. Therefore, manipulating or reprogramming these barriers by prospective strategies might improve current immunotherapies in the clinic or introduce novel NK-based immunotherapies. NK-based immunotherapy could be developed in monotherapy or in combination with other therapeutic regimens such as oncolytic virus therapy and immune checkpoint blockade, as presented in this review.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Farah A Al-Marzook
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, 56100, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
23
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|
24
|
Dianat-Moghadam H, Abbasspour-Ravasjani S, Hamishehkar H, Rahbarghazi R, Nouri M. LXR inhibitor SR9243-loaded immunoliposomes modulate lipid metabolism and stemness in colorectal cancer cells. Med Oncol 2023; 40:156. [PMID: 37093287 DOI: 10.1007/s12032-023-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Reprogrammed metabolism and active stemness contribute to cancer stem cells' (CSCs) survival and tumorigenesis. LXR signaling regulates the metabolism of different cancers. A selective LXR inhibitor, SR9243 (SR), can target and eradicate non-CSC tumor cells. CD133 is a stem marker in solid tumors-associated CSCs within the active lipogenesis, and anti-CD133 mAb targeting liposomal drug delivery systems expected to increase drug internalization and improve the therapeutic efficacy of poor-in water solubility drugs, e, g., SR. In this study, anti-CD133 mAbs-targeted Immunoliposomes (ILipo) were developed for specific delivery of SR into MACS-enriched CD133 + CSCs and induce their functional effects. Results have shown that ILipo having an average size of 64.79 nm can encapsulate SR in maximum proportion, and cell association studies have shown cationic ILipo and targeting CD133 provide the CSCs binding. Also, FCM analysis of RhoB has demonstrated that the ILipo uptake was higher in CD133 + CSCs than in the non-targeted liposomes. ILipo-SR was significantly more toxic in CD133 + CSCs compared to the free SR and non-targeted ones. More efficient than Lipo-SR, ILipo-SR improved the reduction of clonogenicity, stemness, and lipogenesis in CD133 + CSCs in vitro, boosted ROS generation, and induced apoptosis. Our study revealed the dual targeting of CD133 and LXR appears to be a promising strategy for targeting CD133 + CSCs-presenting dynamic metabolism and self-renewal potentials.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Xu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F, Cai Y, Dou J. Eliciting effective tumor immunity against ovarian cancer by cancer stem cell vaccination. Biomed Pharmacother 2023; 161:114547. [PMID: 36933377 DOI: 10.1016/j.biopha.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Advanced ovarian cancer (OC) patients have limited benefit from current relevant cytotoxic and targeted therapies following debulking surgery. Therefore, new therapeutic strategies are in urgent need. Immunotherapy has shown great potential in tumor treatment, especially in tumor vaccine development. The study objective was to evaluate the immune effects of cancer stem cells (CSCs) vaccines on OC. The CD44+CD117+CSCs were isolated from human OC HO8910 and SKOV3 cells using the magnetic cell sorting system; the cancer stem-like cells were selected from murine OC ID8 cell by no-serum formed sphere culture. The CSC vaccines were prepared by freezing and thawing these CSCs, which were then injected into mice followed by challenging the different OC cells. The in vivo antitumor efficacy of CSC immunization revealed the vaccines were capable of significantly provoking immune responses to autologous tumor antigens in vaccinated mice as the mice were found to have markedly inhibited tumor growth, prolonged survival, and decreased CSC counts in OC tissues when compared to mice without the CSC vaccination. The in vitro cytotoxicities of immunocytes toward SKOV3, HO8910 and ID8 cells indicated a significant killing efficacy compared with the controls. However, the antitumor efficacy was remarkably reduced whilst the mucin-1 expression in CSC vaccines was down-regulated by small interfering RNA. Overall, findings from this study provided the evidence that has deepened our understanding of CSC vaccine immunogenicity and anti-OC efficacy, particularly for the role of dominant antigen mucin-1. It is possible to turn the CSC vaccine into an immunotherapeutic approach against ovarian cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China; Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Wu
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunxia Zhang
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunlang Cai
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
26
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
27
|
Therapeutic targeting of dormant cancer stem cells in solid tumors. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett 2023; 554:216007. [PMID: 36396102 DOI: 10.1016/j.canlet.2022.216007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Shahgolzari
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
30
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
31
|
NDR1 activates CD47 transcription by increasing protein stability and nuclear location of ASCL1 to enhance cancer stem cell properties and evasion of phagocytosis in small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:254. [PMID: 36224405 DOI: 10.1007/s12032-022-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most malignant types of lung cancer. Cancer stem cell (CSC) and tumor immune evasion are critical for the development of SCLC. We previously reported that NDR1 enhances breast CSC properties. NDR1 might also have a role in the regulation of immune responses. In the current study, we explore the function of NDR1 in the control of CSC properties and evasion of phagocytosis in SCLC. We find that NDR1 enhances the enrichment of the ALDEFLUORhigh and CD133high population, and promotes sphere formation in SCLC cells. Additionally, NDR1 upregulates CD47 expression to enhance evasion of phagocytosis in SCLC. Furthermore, the effects of NDR1 enhanced CD47 expression and evasion of phagocytosis are more prominent in CSC than in non-CSC. Importantly, NDR1 promotes ASCL1 expression to enhance NDR1-promoted CSC properties and evasion of phagocytosis in SCLC cells. Mechanically, NDR1 enhances protein stability and the nuclear location of ASCL1 to activate the transcription of CD47 in SCLC. Finally, CD47-blocking antibody can be used to target NDR1 enhanced CSC properties and evasion of phagocytosis by suppressing EGFR activation in SCLC. In summary, our data indicate that NDR1 could be a critical factor for modulating CSC properties and phagocytosis in SCLC.
Collapse
|
32
|
Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14163972. [PMID: 36010965 PMCID: PMC9406446 DOI: 10.3390/cancers14163972] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapy helps a person’s immune system to target tumor cells. Recent advances in cancer immunotherapy, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination, have changed the landscape of cancer treatment. These approaches have had profound success in certain cancer types but still fail in the majority of cases. This review will cover both successes and current challenges in cancer immunotherapy, as well as recent advances in the field of basic tumor immunology that will allow us to overcome resistance to existing treatments. Abstract Cancer immunotherapy has revolutionized the field of oncology in recent years. Harnessing the immune system to treat cancer has led to a large growth in the number of novel immunotherapeutic strategies, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination. In this review, we will discuss the current landscape of immuno-oncology research, with a focus on elements that influence immunotherapeutic outcomes. We will also highlight recent advances in basic aspects of tumor immunology, in particular, the role of the immunosuppressive cells within the tumor microenvironment in regulating antitumor immunity. Lastly, we will discuss how the understanding of basic tumor immunology can lead to the development of new immunotherapeutic strategies.
Collapse
|
33
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
34
|
Ju F, Atyah MM, Horstmann N, Gul S, Vago R, Bruns CJ, Zhao Y, Dong QZ, Ren N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther 2022; 13:233. [PMID: 35659296 PMCID: PMC9166529 DOI: 10.1186/s13287-022-02904-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] Open
Abstract
Distinct regions harboring cancer stem cells (CSCs) have been identified within the microenvironment of various tumors, and as in the case of their healthy counterparts, these anatomical regions are termed “niche.” Thus far, a large volume of studies have shown that CSC niches take part in the maintenance, regulation of renewal, differentiation and plasticity of CSCs. In this review, we summarize and discuss the latest findings regarding CSC niche morphology, physical terrain, main signaling pathways and interactions within them. The cellular and molecular components of CSCs also involve genetic and epigenetic modulations that mediate and support their maintenance, ultimately leading to cancer progression. It suggests that the crosstalk between CSCs and their niche plays an important role regarding therapy resistance and recurrence. In addition, we updated diverse therapeutic strategies in different cancers in basic research and clinical trials in this review. Understanding the complex heterogeneity of CSC niches is a necessary pre-requisite for designing superior therapeutic strategies to target CSC-specific factors and/or components of the CSC niche.
Collapse
Affiliation(s)
- Feng Ju
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Manar M Atyah
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Nellie Horstmann
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525, Hamburg, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Christiane J Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany.
| | - Qiong-Zhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, China.,Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China. .,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, China. .,Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, China.
| |
Collapse
|