1
|
Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Strategy for Age-Related Diseases. Cell Prolif 2024:e13795. [PMID: 39704104 DOI: 10.1111/cpr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The global increase in the aging population has led to a concurrent rise in the incidence of age-related diseases, posing substantial challenges to healthcare systems and affecting the well-being of the elderly. Identifying and securing effective treatments has become an urgent priority. In this context, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising and innovative modality in the field of anti-aging medicine, offering a multifaceted therapeutic approach. MSC-Exos demonstrate significant potential due to their immunomodulatory and anti-inflammatory properties, their ability to inhibit oxidative stress, and their reparative effects on senescent tissues. These attributes make them valuable in combating a range of conditions associated with aging, such as cardiovascular diseases, neurodegeneration, skin aging, and osteoarthritis. The integration of exosomes with membrane-penetrating peptides introduces a novel strategy for the delivery of biomolecules, surmounting traditional cellular barriers and enhancing therapeutic efficacy. This review provides a comprehensive synthesis of the current understanding of MSC-Exos, underscoring their role as a novel and potent therapeutic strategy against the intricate challenges of age-related diseases.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mengting Wei
- School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province, China
| | - Ting Fan
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Guo Q, Li P, Chen M, Yu Y, Wan Y, Zhang Z, Ren C, Shen L, Liu X, He D, Zhang Y, Wei G, Zhang D. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation 2024; 47:2094-2107. [PMID: 38662165 DOI: 10.1007/s10753-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.
Collapse
Affiliation(s)
- Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Ping Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Meiling Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yonghong Wan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
3
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
4
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
6
|
Jerala M, Remic T, Hauptman N, Zidar N. Fibrosis-Related microRNAs in Crohn's Disease with Fibrostenosis and Inflammatory Stenosis. Int J Mol Sci 2024; 25:8826. [PMID: 39201512 PMCID: PMC11354456 DOI: 10.3390/ijms25168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is frequently complicated by strictures that can be either inflammatory or fibrostenotic. This distinction is important for deciding the best treatment course, but it can be difficult to determine clinically, sometimes even by advanced imaging techniques. We performed miRNA PCR panel screening on pooled samples of ileum with CD fibrostenosis or inflammatory stenosis. Eight miRNAs with profibrotic (miR-93-5p, miR-376c-3p and miR-424-5p), or fibroprotective (miR-133a-3p, miR-133b, miR-193a-5p, miR-335-5p and miR-378a-3p) functions described in the literature were selected for validation on 20 samples each of CD with fibrostenosis or inflammatory stenosis, with a separate sampling of the submucosa and subserosa. The results showed significant differences between the groups in subserosal samples, with upregulation of profibrotic miRNAs and downregulation of fibroprotective miRNAs in fibrostenosis compared to inflammatory stenosis. Only miR-424-5p showed a significant difference in the submucosa. There were significant differences in miRNA expression between subserosa and submucosa. Our results provide further evidence that the major differences between fibrostenosis and inflammatory stenosis are located in the subserosa, which is inaccessible to endoscopic sampling, highlighting the need for cross-sectional imaging or serological markers. We identify several miRNAs previously not connected to fibrosis in CD, which could potentially serve as biomarkers of fibrostenosis.
Collapse
Affiliation(s)
| | | | | | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (M.J.); (T.R.); (N.H.)
| |
Collapse
|
7
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
8
|
Yin C, Liufu C, Zhu T, Ye S, Jiang J, Wang M, Wang Y, Shi B. Bladder Cancer in Exosomal Perspective: Unraveling New Regulatory Mechanisms. Int J Nanomedicine 2024; 19:3677-3695. [PMID: 38681092 PMCID: PMC11048230 DOI: 10.2147/ijn.s458397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.
Collapse
Affiliation(s)
- Cong Yin
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Cen Liufu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Tao Zhu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shuai Ye
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiahao Jiang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Clinical College of Anhui Medical University, Shenzhen, People’s Republic of China
| | - Mingxia Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Bentao Shi
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
9
|
Li S, Zhang J, Liu X, Wang N, Sun L, Liu J, Liu X, Masoudi A, Wang H, Li C, Guo C, Liu X. Proteomic characterization of hUC-MSC extracellular vesicles and evaluation of its therapeutic potential to treat Alzheimer's disease. Sci Rep 2024; 14:5959. [PMID: 38472335 PMCID: PMC10933327 DOI: 10.1038/s41598-024-56549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.
Collapse
Affiliation(s)
- Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinxing Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Luyao Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianling Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
- Cancer Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Xingliang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunxia Li
- Obstetrics and Gynaecology, The Fifth Hospital of Zhangjiakou, Zhangjiakou, 075000, China
| | - Chunyan Guo
- Hebei Key Laboratory of Neuropharmacology; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
10
|
Lv J, Hao YN, Wang XP, Lu WH, Xie LY, Niu D. Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1. Ren Fail 2023; 45:2177082. [PMID: 36794663 PMCID: PMC9937013 DOI: 10.1080/0886022x.2023.2177082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The rapid increase in the prevalence of diabetes has resulted in more cases of diabetic kidney disease (DKD). Treatment with bone marrow mesenchymal stem cells (BMSCs) may represent an alternative strategy to manage DKD. METHODS HK-2 cells were treated with 30 mM high glucose (HG). Bone marrow MSC-derived exosomes (BMSC-exos) were isolated and internalized into HK-2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase (LDH) assays were used to measure viability and cytotoxicity. The secretion of IL-1β and IL-18 was measured by ELISA. Pyroptosis was assessed by flow cytometry. Quantitative RT-PCR was used to measure the levels of miR-30e-5p, ELAV like RNA binding protein 1 (ELAVL1), IL-1β, and IL-18. The expression of ELAVL1 and pyroptosis-associated cytokine proteins was determined by western blot analysis. A dual-luciferase reporter gene assay was conducted to confirm the relationship between miR-30e-5p and ELAVL1. RESULTS BMSC-exos decreased LDH, IL-1β, and IL-18 secretion and inhibited the expression of the pyroptosis-related factors (IL-1β, caspase-1, GSDMD-N, and NLRP3) in HG-induced HK-2 cells. Moreover, miR-30e-5p depletion derived from BMSC-exos promoted HK-2 cell pyroptosis. Besides, miR-30e-5p over-expression or ELVAL1 knockdown could directly inhibit pyroptosis. ELAVL1 was a target of miR-30e-5p and knocking down ELAVL1 reversed the effect of miR-30e-5p inhibition in BMSC-exos-treated HK-2 cells. CONCLUSIONS BMSC-derived exosomal miR-30e-5p inhibits caspase-1-mediated pyroptosis by targeting ELAVL1 in HG-induced HK-2 cells, which might provide a new strategy for treating DKD.
Collapse
Affiliation(s)
- Jia Lv
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Ya-Ning Hao
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Xiao-Pei Wang
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Wan-Hong Lu
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Li-Yi Xie
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China
| | - Dan Niu
- Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, PR China,CONTACT Dan Niu Department of Nephrology, College of Medicine, Nephrotic Hospital, First Affiliated Hospital, Xi’an Jiaotong University, No. 277 Yanta Road, Xi’an710061, Shanxi Province, PR China
| |
Collapse
|
11
|
Lv Q, Wang Y, Tian W, Liu Y, Gu M, Jiang X, Cai Y, Huo R, Li Y, Li L, Wang X. Exosomal miR-146a-5p derived from human umbilical cord mesenchymal stem cells can alleviate antiphospholipid antibody-induced trophoblast injury and placental dysfunction by regulating the TRAF6/NF-κB axis. J Nanobiotechnology 2023; 21:419. [PMID: 37957714 PMCID: PMC10641965 DOI: 10.1186/s12951-023-02179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Exosomes originating from human umbilical cord mesenchymal stem cells (hucMSC-exos) have become a novel strategy for treating various diseases owing to their ability to regulate intercellular signal communication. However, the potential of hucMSC-exos to improve placental injury in obstetric antiphospholipid syndrome and its underlying mechanism remain unclear. Our objective was to explore the potential application of hucMSC-exos in the treatment of obstetric antiphospholipid syndrome and elucidate its underlying mechanism. In our study, hucMSC-exos ameliorated the functional impairment of trophoblasts caused by antiphospholipid antibodies in vitro and attenuated placental dysfunction in mice with obstetric antiphospholipid syndrome by delivering miR-146a-5p. Exosomal miR-146a-5p suppressed the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibited the activation of NF-κB signaling, leading to the down-regulation of IL-1β and IL-18 to rescue inflammation and modulation of Cleaved-CASP3, BAX, and BCL2 to inhibit apoptosis in HTR8/SVneo cells and mice placenta. This study identified the potential molecular basis of how hucMSC-exos improved antiphospholipid antibody-induced placental injury and highlighted the functional importance of the miR-146a-5p/TRAF6 axis in the progression of obstetric antiphospholipid syndrome. More importantly, this study provided a fresh outlook on the promising use of hucMSC-exos as a novel and effective treatment approach in obstetric antiphospholipid syndrome.
Collapse
Affiliation(s)
- Qingfeng Lv
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuqiu Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengqi Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanjun Cai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Ruiheng Huo
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
- The Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
12
|
Meng Y, Li C, Liang Y, Jiang Y, Zhang H, Ouyang J, Zhang W, Deng R, Tan Q, Yu X, Luo Z. Umbilical Cord Mesenchymal-Stem-Cell-Derived Exosomes Exhibit Anti-Oxidant and Antiviral Effects as Cell-Free Therapies. Viruses 2023; 15:2094. [PMID: 37896871 PMCID: PMC10612094 DOI: 10.3390/v15102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO) were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication, whereafter reducing the virus-induced proinflammatory factor production. This study provides a promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which provides insight into extending the function of ucMSC-EXO in cell-free therapy.
Collapse
Affiliation(s)
- Yi Meng
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Chengcheng Li
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yicong Liang
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Jianhua Ouyang
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Rumei Deng
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhao J, Jiang Q, Xu C, Jia Q, Wang H, Xue W, Wang Y, Zhu Z, Tian L. MiR-26a-5p from HucMSC-derived extracellular vesicles inhibits epithelial mesenchymal transition by targeting Adam17 in silica-induced lung fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114950. [PMID: 37099959 DOI: 10.1016/j.ecoenv.2023.114950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Silicosis is one of several potentially fatal occupational pathologies caused by the prolonged inhalation of respirable crystalline silica. Previous studies have shown that lung epithelial-mesenchymal transition (EMT) plays a significant role in the fibrosis effect of silicosis. Human umbilical cord mesenchymal stem cells-derived Extracellular vesicles (hucMSC-EVs) have attracted great interest as a potential therapy of EMT and fibrosis-related diseases. However, the potential effects of hucMSC-EVs in inhibiting EMT in silica-induced fibrosis, as well as its underlying mechanisms, remain largely unknown. In this study, we used the EMT model in MLE-12 cells and observed the effects and mechanism of hucMSC-EVs inhibition of EMT. The results revealed that hucMSC-EVs can indeed inhibit EMT. MiR-26a-5p was highly enriched in hucMSC-EVs but was down-regulated in silicosis mice. We found that miR-26a-5p in hucMSC-EVs was over-expressed after transfecting miR-26a-5p expressing lentivirus vectors into hucMSCs. Subsequently, we explored if miR-26a-5p, attained from hucMSC-EVs, was involved in inhibiting EMT in silica-induced lung fibrosis. Our findings suggested that hucMSC-EVs could deliver miR-26a-5p into MLE-12 cells and cause the inhibition of the Adam17/Notch signalling pathway to ameliorate EMT in silica-induced pulmonary fibrosis. These findings might represent a novel insight into treating silicosis fibrosis.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Thomaidou AC, Goulielmaki M, Tsintarakis A, Zoumpourlis P, Toya M, Christodoulou I, Zoumpourlis V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int J Mol Sci 2023; 24:ijms24119189. [PMID: 37298143 DOI: 10.3390/ijms24119189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.
Collapse
Affiliation(s)
- Arsinoe C Thomaidou
- Laboratory of Clinical Virology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Marialena Toya
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
16
|
Zhao K, Kong C, Shi N, Jiang J, Li P. Potential angiogenic, immunomodulatory, and antifibrotic effects of mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis. Front Immunol 2023; 14:1125257. [PMID: 37251412 PMCID: PMC10213547 DOI: 10.3389/fimmu.2023.1125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Systemic sclerosis (SSc) is an intricate systemic autoimmune disease with pathological features such as vascular injury, immune dysregulation, and extensive fibrosis of the skin and multiple organs. Treatment options are limited; however, recently, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been acknowledged in preclinical and clinical trials as being useful in treating autoimmune diseases and are likely superior to MSCs alone. Recent research has also shown that MSC-EVs can ameliorate SSc and the pathological changes in vasculopathy, immune dysfunction, and fibrosis. This review summarizes the therapeutic effects of MSC-EVs on SSc and the mechanisms that have been discovered to provide a theoretical basis for future studies on the role of MSC-EVs in treating SSc.
Collapse
Affiliation(s)
- Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
17
|
Xu R, Wu M, Wang Y, Li C, Zeng L, Wang Y, Xiao M, Chen X, Geng S, Lai P, Du X, Weng J. Mesenchymal stem cells reversibly de-differentiate myofibroblasts to fibroblast-like cells by inhibiting the TGF-β-SMAD2/3 pathway. Mol Med 2023; 29:59. [PMID: 37098464 PMCID: PMC10131436 DOI: 10.1186/s10020-023-00630-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Myofibroblasts (MFB), one of the major effectors of pathologic fibrosis, mainly derived from the activation of fibroblast to myofibroblast transition (FMT). Although MFBs were historically considered terminally differentiated cells, their potential for de-differentiation was recently recognized and implied with therapeutic value in treating fibrotic diseases, for instance, idiopathic pulmonary fibrosis (IPF) and post allogeneic hematopoietic stem cell transplantation bronchiolitis obliterans (BO). During the past decade, several methods were reported to block or reverse MFB differentiation, among which mesenchymal stem cells (MSC) have demonstrated potential but undetermined therapeutic values. However, the MSC-mediated regulation of FMT and underlying mechanisms remained largely undefined. METHOD By identifying TGF-β1 hypertension as the pivotal landmark during the pro-fibrotic FMT, TGF-β1-induced MFB and MSC co-culture models were established and utilized to investigate regulations by MSC on FMT in vitro. Methods including RNA sequencing (RNA-seq), Western blot, qPCR and flow cytometry were used. RESULT Our data revealed that TGF-β1 readily induced invasive signatures identified in fibrotic tissues and initiated MFB differentiation in normal FB. MSC reversibly de-differentiated MFB into a group of FB-like cells by selectively inhibiting the TGF-β-SMAD2/3 signaling. Importantly, these proliferation-boosted FB-like cells remained sensitive to TGF-β1 and could be re-induced into MFB. CONCLUSION Our findings highlighted the reversibility of MSC-mediated de-differentiation of MFB through TGF-β-SMAD2/3 signaling, which may explain MSC's inconsistent clinical efficacies in treating BO and other fibrotic diseases. These de-differentiated FB-like cells are still sensitive to TGF-β1 and may further deteriorate MFB phenotypes unless the pro-fibrotic microenvironment is corrected.
Collapse
Affiliation(s)
- Ruohao Xu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Miao Wu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yawen Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|