1
|
Nordberg RC, Bielajew BJ, Takahashi T, Dai S, Hu JC, Athanasiou KA. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol 2024; 20:323-346. [PMID: 38740860 PMCID: PMC11524031 DOI: 10.1038/s41584-024-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Takumi Takahashi
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Shuyan Dai
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Roncada T, Blunn G, Roldo M. Collagen and Alginate Hydrogels Support Chondrocytes Redifferentiation In Vitro without Supplementation of Exogenous Growth Factors. ACS OMEGA 2024; 9:21388-21400. [PMID: 38764657 PMCID: PMC11097186 DOI: 10.1021/acsomega.4c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Focal cartilage defects are a prevalent knee problem affecting people of all ages. Articular cartilage (AC) possesses limited healing potential, and osteochondral defects can lead to pain and long-term complications such as osteoarthritis. Autologous chondrocyte implantation (ACI) has been a successful surgical approach for repairing osteochondral defects over the past two decades. However, a major drawback of ACI is the dedifferentiation of chondrocytes during their in vitro expansion. In this study, we isolated ovine chondrocytes and cultured them in a two-dimensional environment for ACI procedures. We hypothesized that 3D scaffolds would support the cells' redifferentiation without the need for growth factors so we encapsulated them into soft collagen and alginate (col/alg) hydrogels. Chondrocytes embedded into the hydrogels were viable and proliferated. After 7 days, they regained their original rounded morphology (aspect ratio 1.08) and started to aggregate. Gene expression studies showed an upregulation of COL2A1, FOXO3A, FOXO1, ACAN, and COL6A1 (37, 1.13, 22, 1123, and 1.08-fold change expression, respectively) as early as day one. At 21 days, chondrocytes had extensively colonized the hydrogel, forming large cell clusters. They started to replace the degrading scaffold by depositing collagen II and aggrecan, but with limited collagen type I deposition. This approach allows us to overcome the limitations of current approaches such as the dedifferentiation occurring in 2D in vitro expansion and the necrotic formation in spheroids. Further studies are warranted to assess long-term ECM deposition and integration with native cartilage. Though limitations exist, this study suggests a promising avenue for cartilage repair with col/alg hydrogel scaffolds.
Collapse
Affiliation(s)
- Tosca Roncada
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| | - Gordon Blunn
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| | - Marta Roldo
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| |
Collapse
|
3
|
Xu M, Qian Z, Zhang Y, Gao X, Ma Z, Jin X, Wu S. Sirt1 alleviates osteoarthritis via promoting FoxO1 nucleo-cytoplasm shuttling to facilitate autophagy. Int Immunopharmacol 2024; 131:111893. [PMID: 38513577 DOI: 10.1016/j.intimp.2024.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
This study aims to investigate the role and underlying mechanisms of Sirt1 in the pathophysiological process of OA. Safranine O and HE staining were utilized to identify pathological changes in the cartilage tissue. Immunohistochemistry was employed to evaluate the expression levels of proteins. IL-1β treatment and TamCartSirt1flox/flox mice were utilized to induce OA model both in vitro and in vivo. Key autophagy-related transcription factors, autophagy-related genes, and chondrocyte extracellular matrix (ECM) breakdown enzyme markers were examined using multi assays. Immunofluorescence staining revealed subcellular localization and gene expression patterns. ChIP assay and Co-immunoprecipitation assay were conducted to investigate the interactions between FoxO1 and the promoter regions of Atg7 and Sirt1. Our results demonstrate that Sirt1 deficiency exhibited inhibitory effects on ECM synthesis and autophagy, as well as exacerbated angiogenesis. Moreover, Atg7, Foxo1, and Sirt1 could form a protein complex. Sirt1 was observed to facilitate nuclear translocation of FoxO1, enhancing its transcriptional activity. Furthermore, FoxO1 was found to bind to the promoter regions of Atg7 and Sirt1, potentially regulating their expression. This study provides valuable insights into the involvement of Sirt1-Atg7-FoxO1 loop in OA, opening new avenues for targeted therapeutic interventions aiming to mitigate cartilage degradation and restore joint function.
Collapse
Affiliation(s)
- Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengmin Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Chiu C, Zheng K, Xue M, Du D. Comparative Analysis of Hyaline Cartilage Characteristics and Chondrocyte Potential for Articular Cartilage Repair. Ann Biomed Eng 2024; 52:920-933. [PMID: 38190025 DOI: 10.1007/s10439-023-03429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
This study aimed to compare the histological, biochemical, and mechanical characteristics of hyaline cartilage in different regions and evaluate the potential of chondrocytes extracted from each region as donor sources for articular cartilage repair. The cartilage tissues of the femoral head and knee joint, ribs, nasal septum, thyroid, and xiphoid process of adult Bama pigs were isolated for histological, biochemical, and mechanical evaluation and analysis. The corresponding chondrocytes were isolated and evaluated for proliferation and redifferentiation capacity, using biochemical and histological analysis and RT-PCR experiments. Compared with articular cartilage, non-articular hyaline cartilage matrix stained more intensely in Safranin-O staining. Glycosaminoglycan and total collagen content were similar among all groups, while the highest content was measured in nasal septal cartilage. Regarding biomechanics, non-articular cartilage is similar to articular cartilage, but the elastic modulus and hardness are significantly higher in the middle region of costal cartilage. The chondrocytes extracted from different regions had no significant difference in morphology. Hyaline cartilage-like pellets were formed in each group after redifferentiation. The RT-PCR results revealed similar expressions of cartilage-related genes across the groups, albeit with lower expression of Col2 in the xiphoid chondrocytes. Conversely, higher expression of Col10 was observed in the chondrocytes from the rib, thyroid, and xiphoid cartilage. This study provides valuable preclinical data for evaluating heterotopic hyaline cartilage and chondrocytes for articular cartilage regeneration. The findings contribute to the selection of chondrocyte origins and advance the clinical translation of technology for cartilage regeneration.
Collapse
Affiliation(s)
- Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
5
|
Zheng K, Ma Y, Chiu C, Xue M, Zhang C, Du D. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment. J Orthop Translat 2024; 45:140-154. [PMID: 38559899 PMCID: PMC10979122 DOI: 10.1016/j.jot.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wei Y, Guo H, Chen Z, Sun N, Zeng C. Autologous Costal Chondral/Osteochondral Transplantation and Costa-Derived Chondrocyte Implantation for Articular Cartilage Repair: Basic Science and Clinical Applications. Orthop Surg 2024; 16:523-531. [PMID: 38272834 PMCID: PMC10925498 DOI: 10.1111/os.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
There has been increasing application of autologous costal chondral/osteochondral transplantation (ACCT/ACOT) and costa-derived chondrocyte implantation (ACCI) for articular cartilage repair over the past three decades. This review presents the major evidence on the properties of costal cartilage and bone and their qualifications as grafts for articular cartilage repair, the major clinical applications, and the risks and strategies for costal chondral/osteochondral graft(s) harvest. First, costal cartilage has many specific properties that help restore the articular surface. Costa, which can provide abundant cartilage and cylindrical corticocancellous bone, preserves permanent chondrocyte and is the largest source of hyaline cartilage. Second, in the past three decades, autologous costal cartilage-derived grafts, including cartilage, osteochondral graft(s), and chondrocyte, have expanded their indications in trauma and orthopaedic therapy from small to large joints, from the upper to lower limbs, and from non-weight-bearing to weight-bearing joints. Third, the rate of donor-site complications of ACCT or ACOT is low, acceptable, and controllable, and some skills and accumulated experience can help reduce the risks of ACCT and ACOT. Costal cartilage-derived autografting is a promising technique and could be an ideal option for articular chondral lesions with or without subchondral cysts. More high-quality clinical studies are urgently needed to help us further understand the clinical value of such technologies.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Hao Guo
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Zhuhong Chen
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Nian Sun
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
8
|
Kurenkova AD, Presniakova VS, Mosina ZA, Kibirskiy PD, Romanova IA, Tugaeva GK, Kosheleva NV, Vinogradov KS, Kostjuk SV, Kotova SL, Rochev YA, Medvedeva EV, Timashev PS. Resveratrol's Impact on the Chondrogenic Reagents' Effects in Cell Sheet Cultures of Wharton's Jelly-Derived MSCs. Cells 2023; 12:2845. [PMID: 38132166 PMCID: PMC10741663 DOI: 10.3390/cells12242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated. Three-dimensional hWJ-MSC sheets grown on P(NIPAM-co-NtBA)-based matrices were characterized in vitro and in vivo. The combination of resveratrol and LiCl showed effects on hWJ-MSC sheets similar to those of the basal chondrogenic medium. Adding Y27632 decreased both the proportion of hypertrophied cells and the expression of the hyaline cartilage markers. In vitro, DMSO was observed to impede the effects of the chondrogenic factors. The mouse knee defect model experiment revealed that hWJ-MSC sheets grown with the addition of resveratrol and Y27632 were well integrated with the surrounding tissues; however, after 3 months, the restored tissue was identical to that of the naturally healed cartilage injury. Thus, the combination of chondrogenic supplements may not always have additive effects on the progress of cell culture and could be neutralized by the microenvironment after transplantation.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Zlata A. Mosina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina A. Romanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Gilyana K. Tugaeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- FSBSI “Institute of General Pathology and Pathophysiology”, Baltiyskaya St. 8, Moscow 125315, Russia
| | - Kirill S. Vinogradov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Sergei V. Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Chemistry, Belarussian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Svetlana L. Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Yury A. Rochev
- Center for Research in Medical Devices (CÚRAM), National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
9
|
Piperigkou Z, Bainantzou D, Makri N, Papachristou E, Mantsou A, Choli-Papadopoulou T, Theocharis AD, Karamanos NK. Enhancement of mesenchymal stem cells' chondrogenic potential by type II collagen-based bioscaffolds. Mol Biol Rep 2023; 50:5125-5135. [PMID: 37118382 PMCID: PMC10209287 DOI: 10.1007/s11033-023-08461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. METHODS AND RESULTS In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton's jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. CONCLUSIONS Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Bainantzou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nadia Makri
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| |
Collapse
|