1
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
2
|
Pawar YB, Thool AR. Navigating the Genetic Landscape: A Comprehensive Review of Novel Therapeutic Strategies for Retinitis Pigmentosa Management. Cureus 2024; 16:e67046. [PMID: 39286723 PMCID: PMC11405069 DOI: 10.7759/cureus.67046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Retinitis pigmentosa (RP) is a collection of retinal disorders characterized by the progressive degeneration of photoreceptor cells, leading to significant visual impairment and, in severe cases, blindness. RP affects individuals worldwide and can be inherited through various genetic patterns, making it a genetically diverse condition. Despite considerable advancements in diagnostic methods and supportive therapies, there is currently no cure for RP. The focus of existing management strategies is on slowing the progression of the disease and improving the quality of life for those affected. This comprehensive review explores the latest therapeutic approaches in the management of RP, highlighting advancements in genetic therapies, such as gene augmentation and editing, as well as cell-based treatments including stem cell transplantation and induced pluripotent stem cell (iPSC) technologies. Emerging methods like optogenetics and pharmacological interventions designed to preserve retinal function are also discussed. Additionally, the review examines technological innovations, including retinal prosthetics and the use of artificial intelligence, which hold the potential to revolutionize RP treatment. The challenges and limitations associated with these novel therapies, such as safety concerns, accessibility issues, and regulatory hurdles, are critically evaluated. By providing an overview of current research and future directions, this review aims to inform clinicians and researchers about the state of the art in RP treatment and the prospects for achieving significant therapeutic advancements.
Collapse
Affiliation(s)
- Yuga B Pawar
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Archana R Thool
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Rzhanova LA, Markitantova YV, Aleksandrova MA. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024; 13:281. [PMID: 38334673 PMCID: PMC10854871 DOI: 10.3390/cells13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (L.A.R.); (M.A.A.)
| | | |
Collapse
|
4
|
Giacalone JC, Parkinson DH, Balikov DA, Rajesh CR. AMD and Stem Cell-Based Therapies. Int Ophthalmol Clin 2024; 64:21-33. [PMID: 38146879 PMCID: PMC10783850 DOI: 10.1097/iio.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) is a prevalent and complex disease leading to severe vision loss. Stem cells offer promising prospects for AMD treatment as they can be differentiated into critical retinal cell types that could replace lost host retinal cells or provide trophic support to promote host retinal cell survival. However, challenges such as immune rejection, concerns regarding tumorigenicity, and genomic integrity must be addressed. Clinical trials with stem cell-derived retinal pigment epithelial cells have shown preliminary safety in treating dry AMD, but improvements in manufacturing and surgical techniques cell delivery are needed. Late-stage AMD poses additional hurdles, possibly requiring multi-layered grafts. Advancements in automation technologies and gene correction strategies show potential to enhance iPSC-based therapies. Stem cell-based treatments offer hope for AMD management, but further research and optimization are essential for successful clinical implementation.
Collapse
Affiliation(s)
- Joseph C. Giacalone
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - David H. Parkinson
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A. Balikov
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - C. Rao Rajesh
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Schäfer-Korting M. Looking to the Future: Drug Delivery and Targeting in the Prophylaxis and Therapy of Severe and Chronic Diseases. Handb Exp Pharmacol 2024; 284:389-411. [PMID: 37861719 DOI: 10.1007/164_2023_696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
High molecular weight actives and cell-based therapy have the potential to revolutionize the prophylaxis and therapy of severe diseases. Yet, the size and nature of the agents - proteins, nucleic acids, cells - challenge drug delivery and thus formulation development. Moreover, off-target effects may result in severe adverse drug reactions. This makes delivery and targeting an essential component of high-end drug development. Loading to nanoparticles facilitates delivery and enables targeted mRNA vaccines and tumor therapeutics. Stem cell therapy opens up a new horizon in diabetes type 1 among other domains which may enhance the quality of life and life expectancy. Cell encapsulation protects transplants against the recipient's immune system, may ensure long-term efficacy, avoid severe adverse reactions, and simplify the management of rare and fatal diseases.The knowledge gained so far encourages to widen the spectrum of potential indications. Co-development of the active agent and the vehicle has the potential to accelerate drug research. One recommended starting point is the use of computational approaches. Transferability of preclinical data to humans will benefit from performing studies first on validated human 3D disease models reflecting the target tissue, followed by studies on validated animal models. This makes approaching a new level in drug development a multidisciplinary but ultimately worthwhile and attainable challenge. Intense monitoring of the patients after drug approval and periodic reporting to physicians and scientists remain essential for the safe use of drugs especially in rare diseases and pave future research.
Collapse
|
6
|
Levin LA, Chiang MF, Dyer MA, Greenwell TN, Svendsen CN, Tumminia SJ, Van Gelder RN, Wong RO. Translational roadmap for regenerative therapies of eye disease. MED 2023; 4:583-590. [PMID: 37689055 PMCID: PMC10793077 DOI: 10.1016/j.medj.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
The translation of regenerative therapies to neuronal eye diseases requires a roadmap specific to the nature of the target diseases, patient population, methodologies for assessing outcome, and other factors. This commentary focuses on critical issues for translating regenerative eye therapies relevant to retinal neurons to human clinical trials.
Collapse
Affiliation(s)
- Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H3A2B4, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A2B4, Canada.
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Research Hospital, Memphis, TN 38105, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Santa J Tumminia
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Hajizadeh-Tafti F, Golzadeh J, Akyash F, Tahajjodi SS, Farashahi-Yazd E, Heidarian-Meimandi H, Aflatoonian B. Xeno-free generation of new Yazd human embryonic stem cell lines (Yazd4-7) as a prior stage toward good manufacturing practice of clinical-grade raw materials from discarded embryos: A lab resources report. Int J Reprod Biomed 2023; 21:619-628. [PMID: 37885973 PMCID: PMC10598466 DOI: 10.18502/ijrm.v21i8.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 10/28/2023] Open
Abstract
Background Xeno-free generation of human embryonic stem cells (hESCs) is important to prevent potential animal contaminations in culture for advanced cell-based therapeutic applications. Xeno-free production of hESCs is the first step for manufacturing clinical-grade hESC lines. Objective To produce new hESC lines in xeno-free condition. Materials and Methods This lab resources report was conducted at Stem Cell Biology Research Center, Yazd, Iran from 2019-2022. 4 new hESC lines from 11 (10 fresh and 1 frozen) donated surplus discarded human embryos were established. In this study, we report the xeno-free derivation of new Yazd hESC lines (Yazd4-7), without using immunosurgery, by culturing intact zona-free blastocysts obtained from discarded embryos onto the YhFF#8 cells as a feeder layer in a microdrop culture system. The pluripotency gene expression profile of the cell lines was assessed by reverse transcription polymerase chain reaction and the expression of specific surface markers was detected using immunofluorescent staining. In vitro differentiation was induced using embryoid body formation and gene expression profile of 3 germ layers and germ cells. Reverse transcriptase polymerase chain reaction was investigated to prove their pluripotent capacity. Results In sum, we have been able to generate 4 new hESC lines (Yazd4-7) from 11 discarded embryos in xeno-free culture conditions using a micro drop culture system and YhFF#8 as a human source feeder layer. Conclusion The outcome of this work can be the foundation for the future allogeneic cell-based therapeutic application using clinical grade good manufacturing practice-derived hESC derivatives.
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jalal Golzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akyash
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayyeh-Sadat Tahajjodi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi-Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Heidarian-Meimandi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|