1
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
2
|
Firouzabadi SR, Mohammadi I, Ghafourian K, Mofidi SA, Firouzabadi SR, Hashemi SM, Tehrani FR, Jafarabady K. Mesenchymal stem cell-derived extracellular vesicles therapy for primary ovarian insufficiency: a systematic review and meta-analysis of pre-clinical studies. J Ovarian Res 2024; 17:200. [PMID: 39402602 PMCID: PMC11472498 DOI: 10.1186/s13048-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) manifests with hormonal imbalances, menstrual irregularities, follicle loss, and infertility. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are emerging as a promising treatment for POI. This systematic review aims to assess the effects of MSC-EVs on follicle number, hormonal profile, and fertility in POI animal models. METHODS A systematic search of PubMed, Scopus, and Web of Science databases up to December 14th, 2023 was conducted. Two reviewers independently conducted screening, risk of bias assessment, and data extraction. Meta-analysis was performed to analyze treatment versus control outcomes using a random effects model. Publication bias was assessed using Egger's regression test and sensitivity analysis was assessed using the leave-one-out method. Subgroup analyses and meta-regressions were conducted based on EV source, induction model, type of animal, study quality, administration route, administration frequency and route, and dose. RESULTS a total of 29 studies were included. MSC-EVs treatment significantly increased total follicle count (SMD, (95CI), p-value; 3.56, (0.91, 6.21), < 0.001), including primordial (SMD, (95CI), p-value; 2.86, (1.60, 4.12), < 0.001), primary (SMD, (95CI), p-value; 3.17, (2.28, 4.06), < 0.001), mature (SMD, (95CI), p-value; 2.26, (1.02, 3.50), < 0.001), and antral follicles (SMD, (95CI), p-value; 2.44, (1.21, 3.67), < 0.001). Administration frequency and route did not affect this outcome, but EV source affected primordial, primary, secondary and antral follicle count. Additionally, MSC-EVs treatment elevated anti-müllerian hormone (SMD, (95CI); 3.36, (2.14, 4.58)) and estradiol (SMD, (95CI); 3.19, (2.20, 4.17)) levels while reducing follicle stimulating hormone levels (SMD, (95CI); -2.68, (-4.42, -0.94)). Unlike EV source, which had a significant impact on all three hormones, administration frequency, route, and EV dose did not affect this outcome. Moreover, treatment increased offspring number (SMD, (95CI); 3.70, (2.17, 5.23)) and pregnancy odds (OR, (95CI); 10.25, (4.29, 24.46)) compared to controls. Publication bias and a high level of heterogeneity was evident in all analyses, except for the analysis of the pregnancy odds. However, sensitivity analysis indicated that all of the analyses were stable. CONCLUSION MSC-EVs therapy shows promise for POI treatment, potentially facilitating clinical translation. However, Further research is warranted to optimize methodology and assess side effects.
Collapse
Affiliation(s)
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ghafourian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Luo Y, Chen J, Ning J, Sun Y, Chai Y, Xiao F, Huang B, Li G, Tian F, Hao J, Zhang Q, Zhao J, Li Y, Li H. Stem cell-derived extracellular vesicles in premature ovarian failure: an up-to-date meta-analysis of animal studies. J Ovarian Res 2024; 17:182. [PMID: 39252114 PMCID: PMC11382489 DOI: 10.1186/s13048-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND There has been a significant surge in animal studies of stem cell-derived extracellular vesicles (EVs) therapy for the treatment of premature ovarian failure (POF) but its efficacy remains unknown and a comprehensive and up-to-date meta-analysis is lacking. Before clinical translation, it is crucial to thoroughly understand the overall impact of stem cell-derived EVs on POF. METHODS PubMed, EMBASE, Cochrane Library, Web of Science were searched up to February 18, 2024. The risk of bias was evaluated according to Cochrane Handbook criteria, while quality of evidence was assessed using the SYRCLE system. The PRISMA guidance was followed. Trial sequential analysis was conducted to assess outcomes, and sensitivity analysis and publication bias analysis were performed using Stata 14. RESULTS Data from 25 studies involving 339 animals were extracted and analyzed. The analysis revealed significant findings: stem cell-derived EVs increase ovary weight (SMD = 3.88; 95% CI: 2.50 ~ 5.25; P < 0.00001; I2 = 70%), pregnancy rate (RR = 3.88; 95% CI: 1.94 ~ 7.79; P = 0.0001; I2 = 0%), count of births (SMD = 2.17; 95% CI: 1.31 ~ 3.04; P < 0.00001; I2 = 69%) and counts of different types of follicles. In addition, it elevates the level of AMH (SMD = 4.15; 95% CI: 2.75 ~ 5.54; P < 0.00001; I2 = 88%) and E2 (SMD = 2.88; 95% CI: 2.02 ~ 3.73; P < 0.00001; I2 = 80%) expression, while reducing FSH expression (SMD = -5.05; 95% CI: -6.60 ~ -3.50; P < 0.00001; I2 = 90%). Subgroup analysis indicates that the source of EVs, animal species, modeling method, administration route, and test timepoint affected efficacy. Trial sequential analysis showed that there was sufficient evidence to confirm the effects of stem cell-derived EVs on birth counts, ovarian weights, and follicle counts. However, the impact of stem cell-derived EVs on pregnancy rates needs to be further demonstrated through more animal experimental evidence. CONCLUSIONS Stem cell-derived EVs demonstrate safety and efficacy in treating POF animal models, with potential improvements in fertility outcomes. TRIAL REGISTRATION PROSPERO registration number: CRD42024509699.
Collapse
Affiliation(s)
- Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jinyao Ning
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yitong Chai
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Fen Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bixia Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Ge Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Fen Tian
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Mansoori M, Solhjoo S, Palmerini MG, Nematollahi-Mahani SN, Ezzatabadipour M. Granulosa cell insight: unraveling the potential of menstrual blood-derived stem cells and their exosomes on mitochondrial mechanisms in polycystic ovary syndrome (PCOS). J Ovarian Res 2024; 17:167. [PMID: 39153978 PMCID: PMC11330151 DOI: 10.1186/s13048-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents a significant challenge in women's reproductive health, characterized by disrupted folliculogenesis and ovulatory dysfunction. Central to PCOS pathogenesis are granulosa cells, whose dysfunction contributes to aberrant steroid hormone production and oxidative stress. Mitochondrial dysfunction emerges as a key player, influencing cellular energetics, oxidative stress, and steroidogenesis. This study investigates the therapeutic potential of menstrual blood-derived stem cells (MenSCs) and their exosomes in mitigating mitochondrial dysfunction and oxidative stress in PCOS granulosa cells. METHODS Using a rat model of PCOS induced by letrozole, granulosa cells were harvested and cultured. MenSCs and their exosomes were employed to assess their effects on mitochondrial biogenesis, oxidative stress, and estrogen production in PCOS granulosa cells. RESULTS Results showed diminished mitochondrial biogenesis and increased oxidative stress in PCOS granulosa cells, alongside reduced estrogen production. Treatment with MenSCs and their exosomes demonstrated significant improvements in mitochondrial biogenesis, oxidative stress levels, and estrogen production in PCOS granulosa cells. Further analysis showed MenSCs' superior efficacy over exosomes, attributed to their sustained secretion of bioactive factors. Mechanistically, MenSCs and exosomes activated pathways related to mitochondrial biogenesis and antioxidative defense, highlighting their therapeutic potential for PCOS. CONCLUSIONS This study offers insights into granulosa cells mitochondria's role in PCOS pathogenesis and proposes MenSCs and exosomes as a potential strategy for mitigating mitochondrial dysfunction and oxidative stress in PCOS. Further research is needed to understand underlying mechanisms and validate clinical efficacy, presenting promising avenues for addressing PCOS complexity.
Collapse
Affiliation(s)
- Mahna Mansoori
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Park HS, Seok J, Cetin E, Ghasroldasht MM, Liakath Ali F, Mohammed H, Alkelani H, Al-Hendy A. Fertility protection: a novel approach using pretreatment with mesenchymal stem cell exosomes to prevent chemotherapy-induced ovarian damage in a mouse model. Am J Obstet Gynecol 2024; 231:111.e1-111.e18. [PMID: 38378099 DOI: 10.1016/j.ajog.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Primary ovarian insufficiency refers to the loss of ovarian function before the age of 40 years and leads to amenorrhea and infertility. Primary ovarian insufficiency has diverse causes, but a common cause is exposure to gonadotoxic chemotherapy used in cancer treatment. Because of the risk for developing primary ovarian insufficiency, patients who want to preserve their fertility may consider various procedures for fertility preservation. However, current fertility preservation options are highly invasive, carry substantial risks, and have uncertain success rates. Recent studies from our group and others reported that mesenchymal stem cells and mesenchymal stem cell-derived exosomes can restore ovarian function in preclinical models of primary ovarian insufficiency by restoring damaged cells and inhibiting apoptosis. Although the restorative effect of mesenchymal stem cell-derived exosomes has been well reported in previous studies, the potential of mesenchymal stem cell-derived exosomes in preventing ovarian damage has not been fully elucidated. OBJECTIVE This study hypothesized that the antiapoptotic potential of mesenchymal stem cell-derived exosomes may protect ovarian tissue from chemotherapy-induced damage. STUDY DESIGN In this study, we delivered mesenchymal stem cell-derived exosomes directly into the ovaries of mice before administration of chemotherapy. A total of 60 mice were divided into 3 groups (20 per group), which were labeled the control, chemotherapy, and fertility protection groups. Only the fertility protection group mice received exosomes, whereas the control and chemotherapy group mice received saline. After exosome injection, the chemotherapy and fertility protection groups of mice were subjected to chemotherapy to induce ovarian damage. After chemotherapy, we evaluated the protective effects of exosome treatment on ovarian function, such as estrous cyclicity, serum hormone levels, and the fertility rate, by comparing these outcomes between the chemotherapy and fertility protection groups. These outcomes were also compared with those of the control group for comparison with outcomes under healthy conditions. RESULTS After intraovarian injection of exosomes before chemotherapy, the mice were able to maintain their estrous cycle (4- to 5-day cyclicity), serum anti-müllerian hormone level (66.06±26.40 ng/mL, not significantly different from that of the healthy controls), folliculogenesis (32.2±11.3 in the chemotherapy group vs 46.4±14.1 in the fertility protection group; P<.05), expression of the steroidogenic acute regulatory protein gene (a the steroidogenesis marker) (0.44±0.11-fold expression in the chemotherapy group and 0.88±0.31-fold expression in the fertility protection group; P<.05), and fertility (2 of 8 in the chemotherapy group and 5 of 8 in the fertility protection group), thereby showing prevention of chemotherapy-induced damage. We found that exosome treatment before chemotherapy can preserve ovarian function and protect fertility through the overexpression of ATP synthase-binding cassette transporters, such as ABCB1b (10.17±17.75-fold expression in the chemotherapy group and 44.14±33.25-fold expression in the fertility protection group; P<.05) and ABCC10 (3.25±0.59-fold expression in the chemotherapy group and 5.36±1.86-fold expression in the fertility protection group; P<.05). CONCLUSION In this study, we present a novel fertility protection method using mesenchymal stem cell-derived exosomes. We concluded that mesenchymal stem cell-derived exosomes are a promising and simple treatment option for fertility protection in reproductive-aged patients who are receiving gonadotoxic chemotherapy.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL; Department of Biomedical Science, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | | | | | - Hanaa Mohammed
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL; Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| |
Collapse
|
6
|
Alkhrait S, Omran MM, Ghasroldasht MM, Park HS, Katkhuda R, Al-Hendy A. Exosome Therapy: A Novel Approach for Enhancing Estrogen Levels in Perimenopause. Int J Mol Sci 2024; 25:7075. [PMID: 39000181 PMCID: PMC11240923 DOI: 10.3390/ijms25137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Perimenopause significantly impacts women's health globally, often managed with hormone replacement therapy (HRT) despite the associated risks. This study explores a novel alternative exosome therapy, aimed at stimulating estrogen production in ovarian tissues, thus offering a potential non-hormonal treatment for perimenopausal symptoms. Employing ex vivo methodologies, ovarian cortex specimens from perimenopausal women were treated with exosomes derived from human umbilical cord mesenchymal stem cells and cultured under specific conditions (patent number: PCT/US2022/073467). The exosomes were produced under cyclic guanosine monophosphate (cGMP) conditions, ensuring high safety standards. Estrogen levels were quantified using enzyme-linked immunosorbent assay (ELISA), and gene expression changes in estrogen and follicle-stimulating hormone (FSH) receptors were assessed via quantitative polymerase chain reaction (PCR). Immunohistochemistry (IHC) was utilized to evaluate cellular proliferation and apoptotic markers. The results indicated a significant increase in estrogen levels and estrogen receptor-alpha (Erα) expression in treated tissues compared to controls. Additionally, a decrease in apoptotic markers and an increase in cellular proliferation markers were observed. These findings suggest that exosome therapy can effectively enhance estrogen production and modulate receptor sensitivity in perimenopausal ovarian tissues. This approach could serve as a safer alternative to HRT, aligning with the body's natural regulatory mechanisms and potentially offering a more effective treatment option for managing perimenopausal symptoms.
Collapse
Affiliation(s)
- Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, Maternity Hospital-Damascus University, Damascus 011, Syria
| | - Mervat M Omran
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Cancer Biology Department, National Cancer Institute-Cairo University, Cairo 11769, Egypt
| | | | - Hang-Soo Park
- Department of Biomedical Science, Sunchon National University, Suncheon-si 57922, Republic of Korea
| | - Riham Katkhuda
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Xie J, Yang Y, Zhuo A, Gao M, Tang L, Xiao Y, Zhu H, Fu X. Exosomes derived from mesenchymal stem cells attenuate NLRP3-related pyroptosis in autoimmune premature ovarian insufficiency via the NF-κB pathway. Reprod Biomed Online 2024; 48:103814. [PMID: 38569224 DOI: 10.1016/j.rbmo.2024.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/05/2024]
Abstract
RESEARCH QUESTION What is the effect of exosomes derived from bone marrow mesenchymal stem cells (MSC-Exos) on the pyroptosis and recovery of granulosa cells in autoimmune premature ovarian insufficiency (POI)? DESIGN In vitro, KGN cells were exposed to interferon-gamma to simulate immune injury. Samples were collected after a 48 h incubation with MSC-Exos (30 μg/ml). The cell viability, secretion of oestrogen and expression of key molecules in pyroptosis and the nuclear factor kappa B (NF-κB) pathway were tested. In vivo, the BALB/c mouse model of autoimmune POI model induced by zona pellucida glycoprotein 3 was used. Fertility testing and sample collection were applied 4 weeks after the ovarian subcapsular injection of MSC-Exos (150 μg for each ovary). Hormone concentration measurements, follicle counting and pyroptotic pathway analyses were conducted for each group. RESULTS In vitro, MSC-Exos significantly promoted the proliferation rate and secretion of oestrogen, while at the same time suppressing apoptosis and pyroptosis. In vivo, exosomal treatment normalized the irregular oestrous cycles, rescued the follicular loss and increased the pregnancy rate and number of offspring in POI mice. Elevated serum concentrations of oestrogen and anti-Müllerian hormone, as well as decreased concentrations of FSH and interleukin-1β, were shown. Furthermore, MSC-Exos down-regulated the expression of the NLRP3/Casp1/GSDMD pathway and inhibited activation of the NF-κB pathway. CONCLUSIONS These findings demonstrate for the first time that MSC-Exos exert a significant effect on restoring ovarian function in autoimmune POI in vivo and in vitro by suppressing the NLRP3/Casp1/GSDMD pathway and pyroptosis. The NF-κB pathway may contribute to the regulation of NLRP3-related pyroptosis.
Collapse
Affiliation(s)
- Jiaxin Xie
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Yutao Yang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Aiping Zhuo
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Meng Gao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Lichao Tang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Yuanling Xiao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Honglei Zhu
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China
| | - Xiafei Fu
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guanazhou, Guangdong, China.
| |
Collapse
|
9
|
Mousaei Ghasroldasht M, Liakath Ali F, Park HS, Hadizadeh M, Weng SHS, Huff A, Vafaei S, Al-Hendy A. A Comparative Analysis of Naïve Exosomes and Enhanced Exosomes with a Focus on the Treatment Potential in Ovarian Disorders. J Pers Med 2024; 14:482. [PMID: 38793064 PMCID: PMC11122298 DOI: 10.3390/jpm14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Exosome-based therapy has emerged as a promising strategy for addressing diverse disorders, indicating the need for further exploration of the potential therapeutic effects of the exosome cargos. This study introduces "enhanced exosomes", a novel type of exosomes developed through a novel cell culture system. These specific exosomes may become potent therapeutic agents for treating ovarian disorders. In this study, we conducted a comparative analysis of the protein and miRNA cargo compositions of enhanced exosomes and naïve exosomes. Our findings revealed distinct cargo compositions in enhanced exosomes, featuring upregulated proteins such as EFEMP1, HtrA1, PAM, and SDF4, suggesting their potential for treating ovarian disorders. MicroRNA profiling revealed that miR-1-3p, miR-103a-3p, miR-122-5p, miR-1271-5p, miR-133a-3p, miR-184, miR-203a-3p, and miR-206 are key players in regulating ovarian cancer and chemosensitivity by affecting cell cycle progression, cell proliferation, and cell development. We examined polycystic ovary syndrome and premature ovarian insufficiency and identified the altered expression of various miRNAs, such as miR-125b-5p and miR-130b-3p, for diagnostic insights. This study highlights the potential of enhanced exosomes as new therapeutic agents for women's reproductive health, offering a detailed understanding of the impact of their cargo on ovarian disorders.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| | - Shao Huan Samuel Weng
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Allen Huff
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| |
Collapse
|
10
|
Zhang C. Exosomes Derived from Mesenchymal Stem Cells: Therapeutic Opportunities for Spinal Cord Injury. Bull Exp Biol Med 2024; 176:716-721. [PMID: 38888648 DOI: 10.1007/s10517-024-06095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 06/20/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological condition comprising primary and secondary injury and causing severe neurological impairments. The effect of the conventional treatment is limited, including supportive therapy and emergency surgery. Exosomes derived from mesenchymal stem cells (MSCs-Exos) were previously reported to exert its potential therapeutic effects on SCI. Compared with mesenchymal stem cells (MSCs) transplantation for SCI, MSC-Exos showed several superiorities. In the present review, we summarized the revealed data of mechanisms underlying MSC-Exos repairing of SCI and discussed the issues of MSC-Exos use. Thus, in this review we summarized the latest studies on MSCs-Exos in the therapy of SCI and discussed whether MSCs-Exos can be applied to SCI and the prospects of transformation application.
Collapse
Affiliation(s)
- C Zhang
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
11
|
Nabil Salama A, Badr EAEF, Holah NS, El Barbary AA, Hessien M. Conservative Hypomethylation of Mesenchymal Stem Cells and Their Secretome Restored the Follicular Development in Cisplatin-Induced Premature Ovarian Failure Mice. Reprod Sci 2024; 31:1053-1068. [PMID: 37957472 PMCID: PMC10959784 DOI: 10.1007/s43032-023-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Premature ovarian failure (POF) is one of the main causes of infertility in women under the age of 40 years. Recently, epigenetic reprogramming, particularly DNA hypomethylation, has emerged as a promising strategy to enhance the therapeutic potential of mesenchymal stem cells (MSCs). Thus, it is crucial to elucidate how far global hypomethylation of MSCs genome can maintain their pluripotency and viability and improve their therapeutic effect in chemotherapy-induced POF mice. Herein, the genomic DNA of bone marrow-derived MSCs (BM-MSCs) was hypomethylated by the DNA methyltransferase inhibitor (5-Aza-dC), and the degree of global hypomethylation was assessed by methylation-sensitive HepII/MspI restriction analysis. Next, mildly hypomethylated cells and their secretome were independently transplanted (or infused) in POF mice, established via cisplatin-mediated gonadotoxicity. We found that conservative global hypomethylation of BM-MSCs genome with low doses of 5-Aza-dC (≤0.5 μM) has maintained cell viability and MSCs-specific clusters of differentiation (CD). Engraftment of mildly hypomethylated cells in POF mice, or infusion of their secretome, improved the concentrations of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH). Furthermore, mice restored their normal body weight, ovarian size, and ovarian follicle count. This was associated with improved follicular development, where the populations of healthy primordial, primary, secondary, and tertiary follicles were significantly ameliorated, relative to mice transplanted with normally methylated cells. This observational study suggests that transplantation of mildly hypomethylated BM-MSCs cells and their secretome can restore the structural and functional integrity of the damaged ovaries in POF mice. Also, it presents conservative hypomethylation of BM-MSCs and their secretome as a promising alternative to MSCs transplantation.
Collapse
Affiliation(s)
- Amira Nabil Salama
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt
| | - Eman Abd El-Fatah Badr
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Nanis Shawky Holah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Ahmed A El Barbary
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt.
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
12
|
Wu D, Tao S, Zhu L, Zhao C, Xu N. Chitosan Hydrogel Dressing Loaded with Adipose Mesenchymal Stem Cell-Derived Exosomes Promotes Skin Full-Thickness Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:1125-1134. [PMID: 38319146 DOI: 10.1021/acsabm.3c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cutaneous trauma repair is still a challenge in the clinic due to the scar formation and slow healing rate, especially for diabetic patients. Various drug-loading wound dressings have been explored to solve this problem. Mesenchymal stem cell (MSC)-derived exosomes have been considered as a potential cell-free drug because of their anti-inflammation function and tissue repair property that are comparable to that of MSCs. Herein, a composite wound dressing (Exo/Gel) consisting of the chitosan hydrogel and adipose MSC-derived exosome (ADMSC-Exo) was designed and fabricated by a physical mixing method to promote the skin full-thickness wound repair. The exosomes were slowly released from the Exo/Gel dressing with the degradation of the chitosan hydrogel. The Exo/Gel displayed enhanced cell migration and angiogenic properties in vitro. And the results in the rat skin wound model showed that the Exo/Gel could promote the regular collagen deposition, angiogenesis, and hair follicle mosaicism regeneration. These results proved that the hydrogel dressing with ADMSCs-derived exosomes can accelerate skin wound healing, which is a strategy for developing wound dressings.
Collapse
Affiliation(s)
- Dingwei Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Suwan Tao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
13
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Zomer HD, de Souza Lima VJ, Bion MC, Brito KNL, Rode M, Stimamiglio MA, Jeremias TDS, Trentin AG. Evaluation of secretomes derived from human dermal and adipose tissue mesenchymal stem/stromal cells for skin wound healing: not as effective as cells. Stem Cell Res Ther 2024; 15:15. [PMID: 38229157 PMCID: PMC10792854 DOI: 10.1186/s13287-023-03630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Although the paracrine effects of mesenchymal stem/stromal cells (MSCs) have been recognized as crucial mediators of their regenerative effects on tissue repair, the potential of MSC secretomes as effective substitutes for cellular therapies remains underexplored. METHODS In this study, we compared MSCs from the human dermis (DSCs) and adipose tissue (ASCs) with their secretomes regarding their efficacy for skin wound healing using a translationally relevant murine model. RESULTS Proteomic analysis revealed that while there was a substantial overlap in protein composition between DSC and ASC secretomes, specific proteins associated with wound healing and angiogenesis were differentially expressed. Despite a similar angiogenic potential in vivo, DSC and ASC secretomes were found to be less effective than cells in accelerating wound closure and promoting tissue remodeling. CONCLUSIONS Overall, secretome-treated groups showed intermediary results between cells- and control-treated (empty scaffold) groups. These findings highlight that although secretomes possess therapeutic potential, their efficacy might be limited compared to cellular therapies. This study contributes to the growing understanding of MSC secretomes, emphasizes the need for further protocol optimization, and offers insights into their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, USA.
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Victor Juan de Souza Lima
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Monique Coelho Bion
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Translational Neuroscience, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karynne Nazare Lins Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michele Rode
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marco Augusto Stimamiglio
- Laboratory for Stem Cells Basic Biology, Carlos Chagas Institute, FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Rhim WK, Kim JY, Lee SY, Cha SG, Park JM, Park HJ, Park CG, Han DK. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res 2023; 27:130. [PMID: 38082304 PMCID: PMC10712135 DOI: 10.1186/s40824-023-00468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyeon Jeong Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
16
|
Elahi N, Ai J, Makoolati Z. A Review on Treatment of Premature Ovarian Insufficiency: Characteristics, Limitations, and Challenges of Stem Cell versus ExosomeTherapy. Vet Med Int 2023; 2023:5760011. [PMID: 38023426 PMCID: PMC10673665 DOI: 10.1155/2023/5760011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex disorder that can result in varying degrees of infertility. Recently, mesenchymal stem cell (MSC) therapy and its derivatives, such as exosomes, have been introduced as novel strategies for the treatment of POI. This review discusses the features, limitations, and challenges of MSC and exosome therapy in the treatment of POI and provides readers with new insights for comparing and selecting chemical agents, optimizing doses, and other factors involved in study design and treatment strategies. MSC therapy has been shown to improve ovarian function in some animals with POI, but it can also have side effects such as high cost, time-consuming processes, limited lifespan and cell sources, loss of original characteristics during in vitro proliferation, dependence on specific culture environments, potential immune reactions, unknown therapeutic mechanisms, etc. However, exosome therapy is a newer therapy that has not been studied as extensively as MSC therapy, but that it has shown some promise in animal studies. The evidence for the effectiveness of MSC and exosome therapy is still limited, and more research is needed to determine whether these therapies are effective and safe for women with POI. This study presents a new perspective for researchers to advance their research in the fields of cell-based and cell-free therapies.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
17
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
18
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|