1
|
Neugebauer J, Raulien N, Arndt L, Akkermann D, Hobusch C, Lindhorst A, Fröba J, Gericke M. The Impact of Resident Adipose Tissue Macrophages on Adipocyte Homeostasis and Dedifferentiation. Int J Mol Sci 2024; 25:13019. [PMID: 39684730 DOI: 10.3390/ijms252313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity. Using our organotypic AT explant culture method combined with a double-reporter mouse model for labeling ATMs and mature adipocytes, we were able to visualize and quantify dedifferentiated fat (DFAT) cells in AT explants. Preliminary testing showed increased dedifferentiation after tamoxifen (TAM) stimulation, making TAM-dependent lineage-tracing models unsuitable for quantification of naturally occurring DFAT cells. The regulatory role of ATMs in adipocyte dedifferentiation was shown through macrophage depletion using Plexxicon 5622 or clodronate liposomes, which significantly increased DFAT cell levels. Subsequent bulk RNA sequencing of macrophage-depleted explants revealed enrichment of the tumor necrosis factor α (TNFα) signaling pathway as well as downregulation of associated genes. Direct stimulation with TNFα decreased adipocyte dedifferentiation, while application of a TNFα-neutralizing antibody did not significantly alter DFAT cell levels. Our findings suggest a regulatory role of resident ATMs in maintaining the mature adipocyte phenotype and preventing excessive adipocyte dedifferentiation. The specific regulatory pathways as well as the impact that DFAT cells might have on ATMs, and vice versa, are subject to further investigation.
Collapse
Affiliation(s)
- Julia Neugebauer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Dagmar Akkermann
- Paul-Flechsig-Institute, Leipzig University, 04103 Leipzig, Germany
| | | | | | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Shen Y, Xu Z, Zhang X, Zhai Z, Wu Y, Qu F, Xu C. Conditioned Extracellular Vesicles Derived from Dedifferentiated Fat Cells Promote Bone Regeneration by Altering MicroRNAs. Pharmaceutics 2024; 16:1430. [PMID: 39598553 PMCID: PMC11597201 DOI: 10.3390/pharmaceutics16111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Extracellular vesicles (EVs) derived from stem cells demonstrate significant potential in bone regeneration. Adipose tissue is regarded as a stem cell reservoir with abundant reserves and easy accessibility. Compared to adipose-derived stem cells (ASCs), dedifferentiated fat cells (DFATs) possess similar stem cell characteristics but exhibit greater proliferative capacity, higher homogeneity, and an enhanced osteogenic differentiation potential. This study is the first to examine the effect of DFATs-derived EVs on bone regeneration and elucidate their potential mechanisms of action. Methods: Primary DFATs were cultured using the "ceiling culture" method and EVs were isolated by ultracentrifugation and characterized. Experiments were performed to assess the impact of the EVs on the proliferation, migration, and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Subsequently, high-throughput miRNA sequencing was conducted on the EVs derived from DFATs that had undergone 0 days (0d-EVs) and 14 days (14d-EVs) of osteogenic differentiation. Results: The results indicated that the EVs derived from DFATs which experienced 14 days of osteogenic induction significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. High-throughput sequencing results revealed that up-regulated miRNAs in the 14d-EVs were primarily involved in biological processes such as the Notch signaling pathway and the positive regulation of cell movement and migration. The target genes of these differently expressed miRNAs were enriched in osteogenesis-related signaling pathways. Conclusion: This study innovatively demonstrated that conditioned EVs (14d-EVs) derived from DFATs promoted the osteogenic differentiation of BMSCs via miRNAs, offering a promising cell-free therapeutic option for bone defect.
Collapse
Affiliation(s)
- Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zihang Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Xinyu Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zidi Zhai
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| |
Collapse
|
3
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
5
|
Chang Y, Lan F, Zhang Y, Ma S. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling. Stem Cell Rev Rep 2024; 20:1151-1161. [PMID: 38564139 DOI: 10.1007/s12015-024-10713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The CRISPR system, as an effective genome editing technology, has been extensively utilized for the construction of disease models in human pluripotent stem cells. Establishment of a gene mutant or knockout stem cell line typically relies on Cas nuclease-generated double-stranded DNA breaks and exogenous templates, which can produce uncontrollable editing byproducts and toxicity. The recently developed adenine base editors (ABE) have greatly facilitated related research by introducing A/T > G/C mutations in the coding regions or splitting sites (AG-GT) of genes, enabling mutant gene knock-in or knock-out without introducing DNA breaks. In this study, we edit the AG bases in exons anterior to achieve gene knockout via the ABE8e-SpRY, which recognizes most expanded protospacer adjacent motif to target the genome. Except for gene-knockout, ABE8e-SpRY can also efficiently establish disease-related A/T-to-G/C variation cell lines by targeting coding sequences. The method we generated is simple and time-saving, and it only takes two weeks to obtain the desired cell line. This protocol provides operating instructions step-by-step for constructing knockout and point mutation cell lines.
Collapse
Affiliation(s)
- Yun Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongshuai Zhang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China.
| | - Shuhong Ma
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
6
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
8
|
Liu G, Wang Y, Pan Y, Tian L, Choi MH, Wang L, Kim JY, Zhang J, Cheng SH, Zhang L. Hypertonicity induces mitochondrial extracellular vesicles (MEVs) that activate TNF-α and β-catenin signaling to promote adipocyte dedifferentiation. Stem Cell Res Ther 2023; 14:333. [PMID: 38115136 PMCID: PMC10731851 DOI: 10.1186/s13287-023-03558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Recent studies demonstrated that elevated osmolarity could induce adipocyte dedifferentiation, representing an appealing procedure to generate multipotent stem cells. Here we aim to elucidate the molecular mechanisms that underlie osmotic induction of adipocyte reprogramming. METHODS To induce dedifferentiation, the 3T3-L1 or SVF adipocytes were cultured under the hypertonic pressure in 2% PEG 300 medium. Adipocyte dedifferentiation was monitored by aspect ratio measurement, Oil Red staining and qPCR to examine the morphology, lipid droplets, and specific genes of adipocytes, respectively. The osteogenic and chondrogenic re-differentiation capacities of dedifferentiated adipocytes were also examined. To investigate the mechanisms of the osmotic stress-induced dedifferentiation, extracellular vesicles (EVs) were collected from the reprograming cells, followed by proteomic and functional analyses. In addition, qPCR, ELISA, and TNF-α neutralizing antibody (20 ng/ml) was applied to examine the activation and effects of the TNF-α signaling. Furthermore, we also analyzed the Wnt signaling by assessing the activation of β-catenin and applying BML-284, an agonist of β-catenin. RESULTS Hypertonic treatment induced dedifferentiation of both 3T3-L1 and the primary stromal vascular fraction (SVF) adipocytes, characterized by morphological and functional changes. Proteomic profiling revealed that hypertonicity induced extracellular vesicles (EVs) containing mitochondrial molecules including NDUFA9 and VDAC. Functionally, the mitochondrial EVs (MEVs) stimulated TNF-α signaling that activates Wnt-β-catenin signaling and adipocyte dedifferentiation. Neutralizing TNF-α inhibited hypertonic dedifferentiation of adipocytes. In addition, direct activation of Wnt-β-catenin signaling using BML-284 could efficiently induce adipocyte dedifferentiation while circumventing the apoptotic effect of the hypertonic treatment. CONCLUSIONS Hypertonicity prompts the adipocytes to release MEVs, which in turn enhances the secretion of TNF-α as a pro-inflammatory cytokine during the stress response. Importantly, TNF-α is essential for the activation of the Wnt/β-catenin signaling that drives adipocyte dedifferentiation. A caveat of the hypertonic treatment is apoptosis, which could be circumvented by direct activation of the Wnt/β-catenin signaling using BML-284.
Collapse
Affiliation(s)
- Guopan Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ying Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yilin Pan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ming Ho Choi
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells. Biomater Sci 2023; 11:7623-7638. [PMID: 37830400 DOI: 10.1039/d3bm00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|