1
|
Pu X, Liu L, Zhou Y, Xu Z. Determination of the rat estrous cycle vased on EfficientNet. Front Vet Sci 2024; 11:1434991. [PMID: 39119352 PMCID: PMC11306968 DOI: 10.3389/fvets.2024.1434991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
In the field of biomedical research, rats are widely used as experimental animals due to their short gestation period and strong reproductive ability. Accurate monitoring of the estrous cycle is crucial for the success of experiments. Traditional methods are time-consuming and rely on the subjective judgment of professionals, which limits the efficiency and accuracy of experiments. This study proposes an EfficientNet model to automate the recognition of the estrous cycle of female rats using deep learning techniques. The model optimizes performance through systematic scaling of the network depth, width, and image resolution. A large dataset of physiological data from female rats was used for training and validation. The improved EfficientNet model effectively recognized different stages of the estrous cycle. The model demonstrated high-precision feature capture and significantly improved recognition accuracy compared to conventional methods. The proposed technique enhances experimental efficiency and reduces human error in recognizing the estrous cycle. This study highlights the potential of deep learning to optimize data processing and achieve high-precision recognition in biomedical research. Future work should focus on further validation with larger datasets and integration into experimental workflows.
Collapse
Affiliation(s)
- Xiaodi Pu
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Longyi Liu
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yonglai Zhou
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Zihan Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Goetz TG, Becker JB, Mazure CM. Women, opioid use and addiction. FASEB J 2021; 35:e21303. [PMID: 33433026 DOI: 10.1096/fj.202002125r] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
In the midst of the current coronavirus pandemic, the United States continues to struggle with an ongoing opioid epidemic, initially fueled by widespread prescribing of opioid medications during the 1990s. The primary reason for prescribing opioids is to treat pain. Women have more acute and chronic pain and have been prescribed these drugs in significantly greater numbers than men. Comparison of women and men with chronic pain also shows that women receive the majority of prescription opioids, and the use of these prescribed medications became the major pathway to misuse and addiction for women. Yet, recognition of the extent of women's exposure to opioids and the attendant consequences has been limited. Attempts to stem the overall tide of the epidemic focused on reducing the availability of prescription opioids. However, as these medications became more difficult to obtain and treatment opportunities were limited, many turned to other synthetic opioids, such as heroin and fentanyl. Thus, the public health crisis of opioid addiction has endured. This paper highlights the importance of understanding differences among women and men in opioid use and its biological and psychosocial effects to advance the gender-based treatment approaches and effective public health policy.
Collapse
Affiliation(s)
- Teddy G Goetz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jill B Becker
- Biopsychology Area Chair, University of Michigan, Ann Arbor, MI, USA
| | - Carolyn M Mazure
- Department of Psychiatry, Women's Health Research at Yale, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
4
|
Lauer AM, Schrode KM. Sex bias in basic and preclinical noise-induced hearing loss research. Noise Health 2019; 19:207-212. [PMID: 28937014 PMCID: PMC5644379 DOI: 10.4103/nah.nah_12_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Sex differences in brain biochemistry, physiology, structure, and function have been gaining increasing attention in the scientific community. Males and females can have different responses to medications, diseases, and environmental variables. A small number of the approximately 7500 studies of noise-induced hearing loss (NIHL) have identified sex differences, but the mechanisms and characterization of these differences have not been thoroughly studied. The National Institutes of Health (NIH) issued a mandate in 2015 to include sex as a biological variable in all NIH-funded research beginning in January 2016. Materials and Methods: In the present study, the representation of sex as a biological variable in preclinical and basic studies of NIHL was quantified for a 5-year period from January 2011 to December 2015 prior to the implementation of the NIH mandate. Results: The analysis of 210 basic and preclinical studies showed that when sex is specified, experiments are predominantly performed on male animals. Discussion: This bias is present in studies completed in the United States and foreign institutions, and the proportion of studies using only male participants has actually increased over the 5-year period examined. Conclusion: These results underscore the need to invest resources in studying NIHL in both sexes to better understand how sex shapes the outcomes and to optimize treatment and prevention strategies.
Collapse
Affiliation(s)
- Amanda Marie Lauer
- Department of Otolaryngology-HNS and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States
| | - Katrina Marie Schrode
- Department of Otolaryngology-HNS and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. Br J Pharmacol 2018; 176:4107-4118. [PMID: 30418665 DOI: 10.1111/bph.14539] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
There has been a revolution within clinical trials to include females in the research pipeline. However, there has been limited change in the preclinical arena; yet the research here lays the ground work for the subsequent clinical trials. Sex bias has been highlighted as one of the contributing factors to the poor translation and replicability issues undermining preclinical research. There have been multiple calls for action, and the funders of biomedical research are actively pushing the inclusion of sex as a biological variable. Here, we consider the current standard practice within the preclinical research setting, why there is a movement to include females and why the imbalance exists. We explore organizational change theory as a tool to shape strategies needed at an individual and institute level to change the status quo. The ultimate goal is to create a scientific environment in which our preclinical research automatically implements sex-sensitive approaches. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Natasha A Karp
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Neil Reavey
- Council for Science and Animal Welfare, AstraZeneca, Cambridge, UK.,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
6
|
Nawroth J, Rogal J, Weiss M, Brucker SY, Loskill P. Organ-on-a-Chip Systems for Women's Health Applications. Adv Healthc Mater 2018; 7. [PMID: 28985032 DOI: 10.1002/adhm.201700550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Biomedical research, for a long time, has paid little attention to the influence of sex in many areas of study, ranging from molecular and cellular biology to animal models and clinical studies on human subjects. Many studies solely rely on male cells/tissues/animals/humans, although there are profound differences in male and female physiology, which can significantly impact disease mechanisms, toxicity of compounds, and efficacy of pharmaceuticals. In vitro systems have been traditionally very limited in their capacity to recapitulate female-specific physiology and anatomy such as dynamic sex-hormone levels and the complex interdependencies of female reproductive tract organs. However, the advent of microphysiological organ-on-a-chip systems, which attempt to recreate the 3D structure and function of human organs, now gives researchers the opportunity to integrate cells and tissues from a variety of individuals. Moreover, adding a dynamic flow environment allows mimicking endocrine signaling during the menstrual cycle and pregnancy, as well as providing a controlled microfluidic environment for pharmacokinetic modeling. This review gives an introduction into preclinical and clinical research on women's health and discusses where organ-on-a-chip systems are already utilized or have the potential to deliver new insights and enable entirely new types of studies.
Collapse
Affiliation(s)
| | - Julia Rogal
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| | - Martin Weiss
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Peter Loskill
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| |
Collapse
|
7
|
Considering Sex as a Biological Variable Will Be Valuable for Neuroscience Research. J Neurosci 2017; 36:11817-11822. [PMID: 27881768 DOI: 10.1523/jneurosci.1390-16.2016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
The recently implemented National Institutes of Health policy requiring that grant applicants consider sex as a biological variable in the design of basic and preclinical animal research studies has prompted considerable discussion within the neuroscience community. Here, we present reasons to be optimistic that this new policy will be valuable for neuroscience, and we suggest some ways for neuroscientists to think about incorporating sex as a variable in their research.
Collapse
|
8
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sex-Divergent Clinical Outcomes and Precision Medicine: An Important New Role for Institutional Review Boards and Research Ethics Committees. Front Pharmacol 2017; 8:488. [PMID: 28785221 PMCID: PMC5519571 DOI: 10.3389/fphar.2017.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
The efforts toward individualized medicine have constantly increased in an attempt to improve treatment options. These efforts have led to the development of small molecules which target specific molecular pathways involved in cancer progression. We have reviewed preclinical studies of sunitinib that incorporate sex as a covariate to explore possible sex-based differences in pharmacokinetics and drug–drug interactions (DDI) to attempt a relationship with published clinical outputs. We observed that covariate sex is lacking in most clinical outcome reports and suggest a series of ethic-based proposals to improve research activities and identify relevant different sex outcomes. We propose a deeper integration of preclinical, clinical, and translational research addressing statistical and clinical significance jointly; to embed specific sex-divergent endpoints to evaluate possible gender differences objectively during all stages of research; to pay greater attention to sex-divergent outcomes in polypharmacy scenarios, DDI and bioequivalence studies; the clear reporting of preclinical and clinical findings regarding sex-divergent outcomes; as well as to encourage the active role of scientists and the pharmaceutical industry to foster a new scientific culture through their research programs, practice, and participation in editorial boards and Institutional Ethics Review Boards (IRBs) and Research Ethics Committees (RECs). We establish the IRB/REC as the centerpiece for the implementation of these proposals. We suggest the expansion of its competence to follow up clinical trials to ensure that sex differences are addressed and recognized; to engage in data monitoring committees to improve clinical research cooperation and ethically address those potential clinical outcome differences between male and female patients to analyze their social and clinical implications in research and healthcare policies.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| |
Collapse
|
9
|
Abstract
Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics (TK), toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions (ADRs). Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise, Food and Drug Administration rules excluded women of childbearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more ADRs than men; the classic sex hormone paradigm (gonadectomy and replacement) reveals significant interaction of sex and TK including absorption, distribution, metabolisms, and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical, and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging.
Collapse
Affiliation(s)
- Michael Gochfeld
- Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation at Rutgers—Robert Wood Johnson Medical School. Piscataway, New Jersey
| |
Collapse
|
10
|
Zakiniaeiz Y, Cosgrove KP, Potenza MN, Mazure CM. Balance of the Sexes: Addressing Sex Differences in Preclinical Research. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:255-9. [PMID: 27354851 PMCID: PMC4918870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preclinical research is fundamental for the advancement of biomedical sciences and enhancing healthcare. Considering sex differences in all studies throughout the entire biomedical research pipeline is necessary to adequately inform clinical research and improve health outcomes. However, there is a paucity of information to date on sex differences in preclinical work. As of 2009, most (about 80 percent) rodent studies across 10 fields of biology were still conducted with only male animals. In 2016, the National Institutes of Health implemented a policy aimed to address this concern by requiring the consideration of sex as a biological variable in preclinical research grant applications. This perspective piece aims to (1) provide a brief history of female inclusion in biomedical research, (2) describe the importance of studying sex differences, (3) explain possible reasons for opposition of female inclusion, and (4) present potential additional solutions to reduce sex bias in preclinical research.
Collapse
Affiliation(s)
- Yasmin Zakiniaeiz
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Yasmin Zakiniaeiz, 1 Church Street, Suite 721, New Haven, CT 06510; Tel: 203-737-3448;
| | - Kelly P. Cosgrove
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,Department of Radiology and Bioimaging, Yale University, New Haven, CT,Department of Psychiatry, Yale University, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Child Study Center, Yale University School of Medicine, New Haven, CT,CASAColumbia, Yale University School of Medicine, New Haven, CT,Connecticut Mental Health Center, New Haven, CT,Women’s Health Research at Yale, New Haven, CT
| | - Carolyn M. Mazure
- Department of Psychiatry, Yale University, New Haven, CT,Women’s Health Research at Yale, New Haven, CT
| |
Collapse
|