1
|
Alam MK, Faruk Hosen M, Ganji KK, Ahmed K, Bui FM. Identification of key signaling pathways and novel computational drug target for oral cancer, metabolic disorders and periodontal disease. J Genet Eng Biotechnol 2024; 22:100431. [PMID: 39674633 PMCID: PMC11539153 DOI: 10.1016/j.jgeb.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 12/16/2024]
Abstract
AIM Due to conventional endocrinological methods, there is presently no shared work available, and no therapeutic options have been demonstrated in oral cancer (OC) and periodontal disease (PD), type 2 diabetes (T2D), and obese patients. The aim of this study is to determine the similar molecular pathways and potential therapeutic targets in PD, OC, T2D, and obesity that may be used to anticipate the progression of the disease. METHODS Four Gene Expression Omnibus (GEO) microarray datasets (GSE29221, GSE15773, GSE16134, and GSE13601) are used for finding differentially expressed genes (DEGs) for T2D, obese, and PD patients with OC in order to explore comparable pathways and therapeutic medications. Gene ontology (GO) and pathway analysis were used to investigate the functional annotations of the genes. The hub genes were then identified using protein-protein interaction (PPI) networks, and the most significant PPI components were evaluated using a clustering approach. RESULTS These three gene expression-based datasets yielded a total of seven common DEGs. According to the GO annotation, the majority of the DEGs were connected with the microtubule cytoskeleton structure involved in mitosis. The KEGG pathways revealed that the concordant DEGs are connected to the cell cycle and progesterone-mediated oocyte maturation. Based on topological analysis of the PPI network, major hub genes (CCNB1, BUB1, TTK, PLAT, and AHNAK) and notable modules were revealed. This work additionally identified the connection of TF genes and miRNAs with common DEGs, as well as TF activity. CONCLUSION Predictive drug analysis yielded concordant drug compounds involved with T2D, OC, PD, and obesity disorder, which might be beneficial for examining the diagnosis, treatment, and prognosis of metabolic disorders and Oral cancer.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia.
| | - Md Faruk Hosen
- Department of Computing Information System, Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Kiran Kumar Ganji
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Kawsar Ahmed
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka 1216, Bangladesh; Group of Biophotomatiχ, Dept. of ICT, MBSTU, Santosh, Tangail 1902, Bangladesh; Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| |
Collapse
|
2
|
Li G, Fang X, Liu Y, Lu X, Liu Y, Li Y, Zhao Z, Liu B, Yang R. Lipid Regulatory Element Interact with CD44 on Mitochondrial Bioenergetics in Bovine Adipocyte Differentiation and Lipometabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17481-17498. [PMID: 39072486 DOI: 10.1021/acs.jafc.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.
Collapse
Affiliation(s)
- Guanghui Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yinuo Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xin Lu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 1 Haida Road, Zhanjiang, Guangdoong 524000, People's Republic of China
| | - Boqun Liu
- College of Food Science and Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
3
|
Rai P, Marano JM, Kang L, Coutermarsh-Ott S, Daamen AR, Lipsky PE, Weger-Lucarelli J. Obesity fosters severe disease outcomes in a mouse model of coronavirus infection associated with transcriptomic abnormalities. J Med Virol 2024; 96:e29587. [PMID: 38587204 DOI: 10.1002/jmv.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Obesity has been identified as an independent risk factor for severe outcomes in humans with coronavirus disease 2019 (COVID-19) and other infectious diseases. Here, we established a mouse model of COVID-19 using the murine betacoronavirus, mouse hepatitis virus 1 (MHV-1). C57BL/6 and C3H/HeJ mice exposed to MHV-1 developed mild and severe disease, respectively. Obese C57BL/6 mice developed clinical manifestations similar to those of lean controls. In contrast, all obese C3H/HeJ mice succumbed by 8 days postinfection, compared to a 50% mortality rate in lean controls. Notably, both lean and obese C3H/HeJ mice exposed to MHV-1 developed lung lesions consistent with severe human COVID-19, with marked evidence of diffuse alveolar damage (DAD). To identify early predictive biomarkers of worsened disease outcomes in obese C3H/HeJ mice, we sequenced RNA from whole blood 2 days postinfection and assessed changes in gene and pathway expression. Many pathways uniquely altered in obese C3H/HeJ mice postinfection aligned with those found in humans with severe COVID-19. Furthermore, we observed altered gene expression related to the unfolded protein response and lipid metabolism in infected obese mice compared to their lean counterparts, suggesting a role in the severity of disease outcomes. This study presents a novel model for studying COVID-19 and elucidating the mechanisms underlying severe disease outcomes in obese and other hosts.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| | - Jeffrey M Marano
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
| | | | | | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|