1
|
Aksnes M, Schibstad MH, Chaudhry FA, Neerland BE, Caplan G, Saltvedt I, Eldholm RS, Myrstad M, Edwin TH, Persson K, Idland AV, Pollmann CT, Olsen RB, Wyller TB, Zetterberg H, Cunningham E, Watne LO. Differences in metalloproteinases and their tissue inhibitors in the cerebrospinal fluid are associated with delirium. COMMUNICATIONS MEDICINE 2024; 4:124. [PMID: 38937571 PMCID: PMC11211460 DOI: 10.1038/s43856-024-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The aetiology of delirium is not known, but pre-existing cognitive impairment is a predisposing factor. Here we explore the associations between delirium and cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), proteins with important roles in both acute injury and chronic neurodegeneration. METHODS Using a 13-plex Discovery Assay®, we quantified CSF levels of 9 MMPs and 4 TIMPs in 280 hip fracture patients (140 with delirium), 107 cognitively unimpaired individuals, and 111 patients with Alzheimer's disease dementia. The two delirium-free control groups without acute trauma were included to unravel the effects of acute trauma (hip fracture), dementia, and delirium. RESULTS Here we show that delirium is associated with higher levels of MMP-2, MMP-3, MMP-10, TIMP-1, and TIMP-2; a trend suggests lower levels of TIMP-4 are also associated with delirium. Most delirium patients had pre-existing dementia and low TIMP-4 is the only marker associated with delirium in adjusted analyses. MMP-2, MMP-12, and TIMP-1 levels are clearly higher in the hip fracture patients than in both control groups and several other MMP/TIMPs are impacted by acute trauma or dementia status. CONCLUSIONS Several CSF MMP/TIMPs are significantly associated with delirium in hip fracture patients, but alterations in most of these MMP/TIMPs could likely be explained by acute trauma and/or pre-fracture dementia. Low levels of TIMP-4 appear to be directly associated with delirium, and the role of this marker in delirium pathophysiology should be further explored.
Collapse
Affiliation(s)
- Mari Aksnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Neerland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Gideon Caplan
- Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Bærum, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Karin Persson
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Vestfold Hospital Trust, Norwegian National Centre for Ageing and Health, Tønsberg, Vestfold, Norway
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Akershus University Hospital, Lørenskog, Norway
| | | | - Roy Bjørkholt Olsen
- Department of Anesthesiology and Intensive Care, Sørlandet Hospital, Arendal, Norway
| | - Torgeir Bruun Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma Cunningham
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Leiv Otto Watne
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
2
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2024:10.1007/s12035-024-04315-0. [PMID: 38935232 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|