1
|
Zhao Y, He S, Xing Y, Li M, Cao Y, Wang X, Zhao D, Bo X. A Point Cloud Graph Neural Network for Protein-Ligand Binding Site Prediction. Int J Mol Sci 2024; 25:9280. [PMID: 39273227 PMCID: PMC11394757 DOI: 10.3390/ijms25179280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Predicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exploring the nature of disease. However, accurately identifying protein-ligand binding sites remains a challenging task. To address this, we propose PGpocket, a geometric deep learning-based framework to improve protein-ligand binding site prediction. Initially, the protein surface is converted into a point cloud, and then the geometric and chemical properties of each point are calculated. Subsequently, the point cloud graph is constructed based on the inter-point distances, and the point cloud graph neural network (GNN) is applied to extract and analyze the protein surface information to predict potential binding sites. PGpocket is trained on the scPDB dataset, and its performance is verified on two independent test sets, Coach420 and HOLO4K. The results show that PGpocket achieves a 58% success rate on the Coach420 dataset and a 56% success rate on the HOLO4K dataset. These results surpass competing algorithms, demonstrating PGpocket's advancement and practicality for protein-ligand binding site prediction.
Collapse
Affiliation(s)
- Yanpeng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Song He
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuting Xing
- Defense Innovation Institute, Beijing 100071, China
| | - Mengfan Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yang Cao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuanze Wang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Dongsheng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Ishitani R, Takemoto M, Tomii K. Protein ligand binding site prediction using graph transformer neural network. PLoS One 2024; 19:e0308425. [PMID: 39106255 DOI: 10.1371/journal.pone.0308425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Ligand binding site prediction is a crucial initial step in structure-based drug discovery. Although several methods have been proposed previously, including those using geometry based and machine learning techniques, their accuracy is considered to be still insufficient. In this study, we introduce an approach that leverages a graph transformer neural network to rank the results of a geometry-based pocket detection method. We also created a larger training dataset compared to the conventionally used sc-PDB and investigated the correlation between the dataset size and prediction performance. Our findings indicate that utilizing a graph transformer-based method alongside a larger training dataset could enhance the performance of ligand binding site prediction.
Collapse
Affiliation(s)
- Ryuichiro Ishitani
- Division of Computational Drug Discovery and Design, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Preferred Networks, Inc., Chiyoda-ku, Tokyo, Japan
| | - Mizuki Takemoto
- Division of Computational Drug Discovery and Design, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
| |
Collapse
|
3
|
Carbery A, Buttenschoen M, Skyner R, von Delft F, Deane CM. Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures. J Cheminform 2024; 16:32. [PMID: 38486231 PMCID: PMC10941399 DOI: 10.1186/s13321-024-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Protein-ligand binding site prediction is a useful tool for understanding the functional behaviour and potential drug-target interactions of a novel protein of interest. However, most binding site prediction methods are tested by providing crystallised ligand-bound (holo) structures as input. This testing regime is insufficient to understand the performance on novel protein targets where experimental structures are not available. An alternative option is to provide computationally predicted protein structures, but this is not commonly tested. However, due to the training data used, computationally-predicted protein structures tend to be extremely accurate, and are often biased toward a holo conformation. In this study we describe and benchmark IF-SitePred, a protein-ligand binding site prediction method which is based on the labelling of ESM-IF1 protein language model embeddings combined with point cloud annotation and clustering. We show that not only is IF-SitePred competitive with state-of-the-art methods when predicting binding sites on experimental structures, but it performs better on proxies for novel proteins where low accuracy has been simulated by molecular dynamics. Finally, IF-SitePred outperforms other methods if ensembles of predicted protein structures are generated.
Collapse
Affiliation(s)
- Anna Carbery
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Martin Buttenschoen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Rachael Skyner
- OMass Therapeutics, Building 4000, Chancellor Court, John Smith Drive, ARC Oxford, OX4 2GX, UK
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
| |
Collapse
|
4
|
Gu L, Li B, Ming D. A multilayer dynamic perturbation analysis method for predicting ligand-protein interactions. BMC Bioinformatics 2022; 23:456. [PMID: 36324073 PMCID: PMC9628359 DOI: 10.1186/s12859-022-04995-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Ligand-protein interactions play a key role in defining protein function, and detecting natural ligands for a given protein is thus a very important bioengineering task. In particular, with the rapid development of AI-based structure prediction algorithms, batch structural models with high reliability and accuracy can be obtained at low cost, giving rise to the urgent requirement for the prediction of natural ligands based on protein structures. In recent years, although several structure-based methods have been developed to predict ligand-binding pockets and ligand-binding sites, accurate and rapid methods are still lacking, especially for the prediction of ligand-binding regions and the spatial extension of ligands in the pockets. RESULTS In this paper, we proposed a multilayer dynamics perturbation analysis (MDPA) method for predicting ligand-binding regions based solely on protein structure, which is an extended version of our previously developed fast dynamic perturbation analysis (FDPA) method. In MDPA/FDPA, ligand binding tends to occur in regions that cause large changes in protein conformational dynamics. MDPA, examined using a standard validation dataset of ligand-protein complexes, yielded an averaged ligand-binding site prediction Matthews coefficient of 0.40, with a prediction precision of at least 50% for 71% of the cases. In particular, for 80% of the cases, the predicted ligand-binding region overlaps the natural ligand by at least 50%. The method was also compared with other state-of-the-art structure-based methods. CONCLUSIONS MDPA is a structure-based method to detect ligand-binding regions on protein surface. Our calculations suggested that a range of spaces inside the protein pockets has subtle interactions with the protein, which can significantly impact on the overall dynamics of the protein. This work provides a valuable tool as a starting point upon which further docking and analysis methods can be used for natural ligand detection in protein functional annotation. The source code of MDPA method is freely available at: https://github.com/mingdengming/mdpa .
Collapse
Affiliation(s)
- Lin Gu
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| | - Bin Li
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| | - Dengming Ming
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| |
Collapse
|
5
|
Liao J, Wang Q, Wu F, Huang Z. In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets. Molecules 2022; 27:7103. [PMID: 36296697 PMCID: PMC9609013 DOI: 10.3390/molecules27207103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 07/30/2023] Open
Abstract
Target identification is an important step in drug discovery, and computer-aided drug target identification methods are attracting more attention compared with traditional drug target identification methods, which are time-consuming and costly. Computer-aided drug target identification methods can greatly reduce the searching scope of experimental targets and associated costs by identifying the diseases-related targets and their binding sites and evaluating the druggability of the predicted active sites for clinical trials. In this review, we introduce the principles of computer-based active site identification methods, including the identification of binding sites and assessment of druggability. We provide some guidelines for selecting methods for the identification of binding sites and assessment of druggability. In addition, we list the databases and tools commonly used with these methods, present examples of individual and combined applications, and compare the methods and tools. Finally, we discuss the challenges and limitations of binding site identification and druggability assessment at the current stage and provide some recommendations and future perspectives.
Collapse
Affiliation(s)
- Jianbo Liao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Qinyu Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
6
|
Aguilar-Pineda GE, Olivares-Quiroz L. Catalytic and binding sites prediction in globular proteins through discrete Markov chains and network centrality measures. Phys Biol 2021; 18. [PMID: 34433159 DOI: 10.1088/1478-3975/ac211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
In this work we use a discrete Markov chain approach combined with network centrality measures to identify and predict the location of active sites in globular proteins. To accomplish this, we use a three-dimensional network of proteinCαatoms as nodes connected through weighted edges which represent the varying interaction degree between protein's atoms. We compute the mean first passage time matrixH= {Hji} for this Markov chain and evaluate the averaged number of steps ⟨Hj⟩ to reach single nodenjin order to identify such residues that, on the average, are at the least distant from every other node. We also carry out a graph theory analysis to evaluate closeness centralityCc, betweenness centralityCband eigenvector centralityCemeasures which provide relevant information about the connectivity structure and topology of theCαprotein networks. Finally we also performed an analysis of equivalent random and regular networks of the same sizeNin terms of the average path lengthLand the average clustering coefficient⟨C⟩comparing these with the corresponding values forCαprotein networks. Our results show that the mean-first passage time matrixHand its related quantity ⟨Hj⟩ together withCc,CbandCecan not only predict with relative high accuracy the location of active sites in globular proteins but also exhibit a high feasibility to use them to predict the existence of new regions in protein's structure to identify new potential binding or catalytic activity or, in some cases, the presence of new allosteric pathways.
Collapse
Affiliation(s)
- Gabriel E Aguilar-Pineda
- Departamento de Fisica, Universidad Autónoma de la Ciudad de México (UACM), Campus Centro Histórico, CP 06080, Mexico City, Mexico
| | - L Olivares-Quiroz
- Departamento de Física and Posgrado en Ciencias de la Complejidad, Universidad Autónoma de la Ciudad de México (UACM), CP 09760, Mexico City, Mexico.,Centro de Ciencias de la Complejidad C3 (UNAM), Circuito Centro Cultural S/N Cd. Universitaria, CP 04510, Mexico City, Mexico
| |
Collapse
|
7
|
Guterres H, Park SJ, Zhang H, Im W. CHARMM-GUI LBS Finder & Refiner for Ligand Binding Site Prediction and Refinement. J Chem Inf Model 2021; 61:3744-3751. [PMID: 34296608 DOI: 10.1021/acs.jcim.1c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A protein performs its task by binding a variety of ligands in its local region that is also known as the ligand-binding-site (LBS). Therefore, accurate prediction, characterization, and refinement of LBS can facilitate protein functional annotations and structure-based drug design. In this work, we present CHARMM-GUI LBS Finder & Refiner (https://www.charmm-gui.org/input/lbsfinder) that predicts potential LBS, offers interactive features for local LBS structure analysis, and prepares various molecular dynamics (MD) systems and inputs by setting up distance restraint potentials for LBS structure refinement. LBS Finder & Refiner supports 5 different commonly used simulation programs, such as NAMD, AMBER, GROMACS, GENESIS, and OpenMM, for LBS structure refinement together with hydrogen mass repartitioning. The capability of LBS Finder & Refiner is illustrated through LBS structure predictions and refinements of 48 modeled and 20 apo benchmark target proteins. Overall, successful LBS structure predictions and refinements are seen in our benchmark tests. We hope that LBS Finder & Refiner is useful to predict, characterize, and refine potential LBS on any given protein of interest.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Han Zhang
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
8
|
Brackenridge DA, McGuffin LJ. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods with a Focus on FunFOLD3. Methods Mol Biol 2021; 2365:43-58. [PMID: 34432238 DOI: 10.1007/978-1-0716-1665-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are essential molecules with a diverse range of functions; elucidating their biological and biochemical characteristics can be difficult and time consuming using in vitro and/or in vivo methods. Additionally, in vivo protein-ligand binding site elucidation is unable to keep place with current growth in sequencing, leaving the majority of new protein sequences without known functions. Therefore, the development of new methods, which aim to predict the protein-ligand interactions and ligand-binding site residues directly from amino acid sequences, is becoming increasingly important. In silico prediction can utilise either sequence information, structural information or a combination of both. In this chapter, we will discuss the broad range of methods for ligand-binding site prediction from protein structure and we will describe our method, FunFOLD3, for the prediction of protein-ligand interactions and ligand-binding sites based on template-based modelling. Additionally, we will describe the step-by-step instructions using the FunFOLD3 downloadable application along with examples from the Critical Assessment of Techniques for Protein Structure Prediction (CASP) where FunFOLD3 has been used to aid ligand and ligand-binding site prediction. Finally, we will introduce our newer method, FunFOLD3-D, a version of FunFOLD3 which aims to improve template-based protein-ligand binding site prediction through the integration of docking, using AutoDock Vina.
Collapse
|
9
|
Jiang M, Li Z, Bian Y, Wei Z. A novel protein descriptor for the prediction of drug binding sites. BMC Bioinformatics 2019; 20:478. [PMID: 31533611 PMCID: PMC6749706 DOI: 10.1186/s12859-019-3058-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Binding sites are the pockets of proteins that can bind drugs; the discovery of these pockets is a critical step in drug design. With the help of computers, protein pockets prediction can save manpower and financial resources. Results In this paper, a novel protein descriptor for the prediction of binding sites is proposed. Information on non-bonded interactions in the three-dimensional structure of a protein is captured by a combination of geometry-based and energy-based methods. Moreover, due to the rapid development of deep learning, all binding features are extracted to generate three-dimensional grids that are fed into a convolution neural network. Two datasets were introduced into the experiment. The sc-PDB dataset was used for descriptor extraction and binding site prediction, and the PDBbind dataset was used only for testing and verification of the generalization of the method. The comparison with previous methods shows that the proposed descriptor is effective in predicting the binding sites. Conclusions A new protein descriptor is proposed for the prediction of the drug binding sites of proteins. This method combines the three-dimensional structure of a protein and non-bonded interactions with small molecules to involve important factors influencing the formation of binding site. Analysis of the experiments indicates that the descriptor is robust for site prediction. Electronic supplementary material The online version of this article (10.1186/s12859-019-3058-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingjian Jiang
- Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao, 266100, China
| | - Zhen Li
- Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao, 266100, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road Aoshanwei, Qingdao, 266237, China
| | - Yujie Bian
- Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao, 266100, China
| | - Zhiqiang Wei
- Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao, 266100, China. .,Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road Aoshanwei, Qingdao, 266237, China.
| |
Collapse
|
10
|
Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 2019; 47:W345-W349. [PMID: 31114880 PMCID: PMC6602436 DOI: 10.1093/nar/gkz424] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 11/12/2022] Open
Abstract
PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.
Collapse
Affiliation(s)
- Lukas Jendele
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Czech Republic
| | - Radoslav Krivak
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Czech Republic
| | - Petr Skoda
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Czech Republic
| | - Marian Novotny
- Department of Cell Biology, Faculty of Science, Charles University, Czech Republic
| | - David Hoksza
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Czech Republic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| |
Collapse
|
11
|
New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci 2019; 44:312-330. [PMID: 30612897 DOI: 10.1016/j.tibs.2018.11.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Many central biological events rely on protein-ligand interactions. The identification and characterization of protein-binding sites for ligands are crucial for the understanding of functions of both endogenous ligands and synthetic drug molecules. G protein-coupled receptors (GPCRs) typically detect extracellular signal molecules on the cell surface and transfer these chemical signals across the membrane, inducing downstream cellular responses via G proteins or β-arrestin. GPCRs mediate many central physiological processes, making them important targets for modern drug discovery. Here, we focus on the most recent breakthroughs in finding new binding sites and binding modes of GPCRs and their potentials for the development of new medicines.
Collapse
|
12
|
Krivák R, Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform 2018; 10:39. [PMID: 30109435 PMCID: PMC6091426 DOI: 10.1186/s13321-018-0285-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/29/2018] [Indexed: 01/29/2023] Open
Abstract
Background Ligand binding site prediction from protein structure has many applications related to elucidation of protein function and structure based drug discovery. It often represents only one step of many in complex computational drug design efforts. Although many methods have been published to date, only few of them are suitable for use in automated pipelines or for processing large datasets.
These use cases require stability and speed, which disqualifies many of the recently introduced tools that are either template based or available only as web servers. Results We present P2Rank, a stand-alone template-free tool for prediction of ligand binding sites based on machine learning. It is based on prediction of ligandability of local chemical neighbourhoods that are centered on points placed on the solvent accessible surface of a protein.
We show that P2Rank outperforms several existing tools, which include two widely used stand-alone tools (Fpocket, SiteHound), a comprehensive consensus based tool (MetaPocket 2.0), and a recent deep learning based method (DeepSite). P2Rank belongs to the fastest available tools (requires under 1 s for prediction on one protein), with additional advantage of multi-threaded implementation. Conclusions P2Rank is a new open source software package for ligand binding site prediction from protein structure. It is available as a user-friendly stand-alone command line program and a Java library. P2Rank has a lightweight installation and does not depend on other bioinformatics tools or large structural or sequence databases. Thanks to its speed and ability to make fully automated predictions, it is particularly well suited for processing large datasets or as a component of scalable structural bioinformatics pipelines. Electronic supplementary material The online version of this article (10.1186/s13321-018-0285-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radoslav Krivák
- Department of Software Engineering, Charles University, Prague, Czech Republic.
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague, Czech Republic.
| |
Collapse
|