1
|
Pamonsupornwichit T, Kodchakorn K, Udomwong P, Sornsuwan K, Weechan A, Juntit OA, Nimmanpipug P, Tayapiwatana C. Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations. J Mol Graph Model 2024; 133:108884. [PMID: 39405982 DOI: 10.1016/j.jmgm.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10-8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anuwat Weechan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - On-Anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Iturrieta-González I, Chahin C, Cabrera J, Concha C, Olivares-Ferretti P, Briones J, Vega F, Bustos-Medina L, Fonseca-Salamanca F. Molecular Study of Pneumocystis jirovecii in Respiratory Samples of HIV Patients in Chile. J Fungi (Basel) 2024; 10:117. [PMID: 38392789 PMCID: PMC10889964 DOI: 10.3390/jof10020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 02/24/2024] Open
Abstract
Pneumocystis is an opportunistic fungus that causes potentially fatal pneumonia (PCP) in immunocompromised patients. The objective of this study was to determine the prevalence of P. jirovecii in HIV patients through phenotypic and molecular study, to investigate the genetic polymorphisms of P. jirovecii at the mitochondrial gene mtLSU and at the nuclear dihydropteroate synthase gene (DHPS), and by analysis of molecular docking to study the effect of DHPS mutations on the enzymatic affinity for sulfamethoxazole. A PCP prevalence of 28.3% was detected, with mtLSU rRNA genotypes 3 (33.3%) and 2 (26.6%) being the most common. A prevalence of 6.7% (1/15) mutations in the DHPS gene was detected, specifically at codon 55 of the amino acid sequence of dihydropteroate synthase. Molecular docking analysis showed that the combination of mutations at 55 and 98 codons is required to significantly reduce the affinity of the enzyme for sulfamethoxazole. We observed a low rate of mutations in the DHPS gene, and molecular docking analysis showed that at least two mutations in the DHPS gene are required to significantly reduce the affinity of dihydropteroate synthase for sulfamethoxazole.
Collapse
Affiliation(s)
- Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Jeffrey Modell Foundation for Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| | - Carolina Chahin
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Johanna Cabrera
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Carla Concha
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | | | - Javier Briones
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Fernando Vega
- Critical Patient Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Luis Bustos-Medina
- Department of Public Health and CIGES, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Flery Fonseca-Salamanca
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
3
|
Torres F, Stadler G, Kwiatkowski W, Orts J. A Benchmark Study of Protein-Fragment Complex Structure Calculations with NMR 2. Int J Mol Sci 2023; 24:14329. [PMID: 37762631 PMCID: PMC10531959 DOI: 10.3390/ijms241814329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Protein-fragment complex structures are particularly sought after in medicinal chemistry to rationally design lead molecules. These structures are usually derived using X-ray crystallography, but the failure rate is non-neglectable. NMR is a possible alternative for the calculation of weakly interacting complexes. Nevertheless, the time-consuming protein signal assignment step remains a barrier to its routine application. NMR Molecular Replacement (NMR2) is a versatile and rapid method that enables the elucidation of a protein-ligand complex structure. It has been successfully applied to peptides, drug-like molecules, and more recently to fragments. Due to the small size of the fragments, ca < 300 Da, solving the structures of the protein-fragment complexes is particularly challenging. Here, we present the expected performances of NMR2 when applied to protein-fragment complexes. The NMR2 approach has been benchmarked with the SERAPhic fragment library to identify the technical challenges in protein-fragment NMR structure calculation. A straightforward strategy is proposed to increase the method's success rate further. The presented work confirms that NMR2 is an alternative method to X-ray crystallography for solving protein-fragment complex structures.
Collapse
Affiliation(s)
- Felix Torres
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Gabriela Stadler
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Witek Kwiatkowski
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Julien Orts
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|