1
|
Wu J, Santos-Garcia I, Eiriz I, Brüning T, Kvasnička A, Friedecký D, Nyman TA, Pahnke J. Sex-Dependent Efficacy of Sphingosine-1-Phosphate Receptor Agonist FTY720 in Mitigating Huntington's Disease. Pharmacol Res 2024:107557. [PMID: 39725338 DOI: 10.1016/j.phrs.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions. Our study aimed to investigate the therapeutic potential of FTY for treating HD by utilizing a well-characterized mouse model of HD (zQ175dn) and wild-type littermates. The study design included a crossover, long-term oral treatment with 1mg/kg to 2mg/kg FTY from the age of 15 to 46 weeks (n = 128). Different motor behavior and physiological parameters were assessed throughout the study. The findings revealed that FTY rescued disease-related body weight loss in a sex-dependent manner, indicating its potential to regulate metabolic disturbances and to counteract neurodegenerative processes in HD. FTY intervention also rescued testicular atrophy, restored testis tissue structure in male mice suggesting a broader impact on peripheral tissues affected by huntingtin pathology. Histological analyses of the brain revealed delayed accumulation of activated astrocytes contributing to the preservation of the neural microenvironment by reducing neuroinflammation. The extent of FTY-related disease improvement was sex-dependent. Motor functions and body weight improved mostly in female mice with sustained estrogen levels, whereas males had to compensate for the ongoing, disease-related testis atrophy and the loss of androgen production. Our study underscores the beneficial therapeutic effects of FTY on HD involving endogenous steroid hormones and their important anabolic effects. It positions FTY as a candidate for therapeutic interventions targeting various aspects of HD pathology. Further studies are needed to fully evaluate its therapeutic potential in patients.
Collapse
Affiliation(s)
- Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway
| | - Irene Santos-Garcia
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway
| | - Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, CZ-77900 Olomouc, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, CZ-77900 Olomouc, Czech Republic
| | - Tuula A Nyman
- Proteomics Core Facility (PCF), Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel.
| |
Collapse
|
2
|
Haßmann U, Amann S, Babayan N, Fankhauser S, Hofmaier T, Jakl T, Nendza M, Stopper H, Stefan SM, Landsiedel R. Predictive, integrative, and regulatory aspects of AI-driven computational toxicology - Highlights of the German Pharm-Tox Summit (GPTS) 2024. Toxicology 2024; 509:153975. [PMID: 39426660 DOI: 10.1016/j.tox.2024.153975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The 9th German Pharm-Tox Summit (GPTS) and the 90th Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology (DGPT) took place in Munich from March 13-15, 2024. The event brought together over 700 participants from around the world to discuss cutting-edge developments in the fields of pharmacology and toxicology as well as scientific innovations and novel insights. A key focus of the conference was on the rapidly increasing role of computational toxicology, artificial intelligence (AI), and machine learning (ML) into the field, marking a shift away from traditional methods and allowing the reduction of animal testing as primary tool for toxicological risk assessment. Tools such as Toxometris.ai showcased the potential of AI-based risk assessments for predicting carcinogenicity, offering more ethical and efficient alternatives. Additionally, computer-driven models like computer-aided pattern analysis (C@PA) for drug toxicity prediction were presented, emphasizing the growing role of chem- and bioinformatic applications in computational sciences. Throughout the summit, there was a strong focus on the need for regulatory innovation to support the adoption of these advanced technologies and ensure the safety and sustainability of chemical substances and drugs.
Collapse
Affiliation(s)
- Ute Haßmann
- Toxlicon GmbH, Obwaldener Zeile 23, Berlin 12205, Germany.
| | - Sigrid Amann
- Toxlicon GmbH, Obwaldener Zeile 23, Berlin 12205, Germany
| | | | - Simone Fankhauser
- Austrian Environment Ministry, Spittelauer Lände 5, Vienna 1090, Austria
| | - Tina Hofmaier
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Spargelfeldstraße 191, Wien 1220, Austria
| | - Thomas Jakl
- Austrian Environment Ministry, Spittelauer Lände 5, Vienna 1090, Austria
| | - Monika Nendza
- Analytisches Laboratorium, Bahnhofstr. 1, Luhnstedt 24816, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Sven Marcel Stefan
- Medicinal Chemistry and Systems Pharmacology, Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology (LIED), University Medical Center Schleswig-Holstein (UKSH), University of Lübeck (UzL), Ratzeburger Allee 160, Lübeck 23538, Germany; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, Lublin 20-093, Poland
| | - Robert Landsiedel
- BASF SE, Experimentelle Toxikologie und Ökologie, Carl-Bosch-Straße, Ludwigshafen am Rhein 67056, Germany
| |
Collapse
|
3
|
Stefan SM, Stefan K, Namasivayam V. Computer-aided pattern scoring (C@PS): a novel cheminformatic workflow to predict ligands with rare modes-of-action. J Cheminform 2024; 16:108. [PMID: 39313842 PMCID: PMC11421111 DOI: 10.1186/s13321-024-00901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
The identification, establishment, and exploration of potential pharmacological drug targets are major steps of the drug development pipeline. Target validation requires diverse chemical tools that come with a spectrum of functionality, e.g., inhibitors, activators, and other modulators. Particularly tools with rare modes-of-action allow for a proper kinetic and functional characterization of the targets-of-interest (e.g., channels, enzymes, receptors, or transporters). Despite, functional innovation is a prime criterion for patentability and commercial exploitation, which may lead to therapeutic benefit. Unfortunately, data on new, and thus, undruggable or barely druggable targets are scarce and mostly available for mainstream modes-of-action only (e.g., inhibition). Here we present a novel cheminformatic workflow-computer-aided pattern scoring (C@PS)-which was specifically designed to project its prediction capabilities into an uncharted domain of applicability.
Collapse
Affiliation(s)
- Sven Marcel Stefan
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Katja Stefan
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Vigneshwaran Namasivayam
- Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Manen-Freixa L, Antolin AA. Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery. Expert Opin Drug Discov 2024; 19:1043-1069. [PMID: 39004919 DOI: 10.1080/17460441.2024.2376643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology. AREAS COVERED This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples. EXPERT OPINION Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.
Collapse
Affiliation(s)
- Leticia Manen-Freixa
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Albert A Antolin
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Center for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
5
|
Haupenthal J, Rafehi M, Kany AM, Lespine A, Stefan K, Hirsch AKH, Stefan SM. Target repurposing unravels avermectins and derivatives as novel antibiotics inhibiting energy-coupling factor transporters (ECFTs). Arch Pharm (Weinheim) 2024; 357:e2400267. [PMID: 38896404 DOI: 10.1002/ardp.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Energy-coupling factor transporters (ECFTs) are membrane-bound ATP-binding cassette (ABC) transporters in prokaryotes that are found in pathogens against which novel antibiotics are urgently needed. To date, just 54 inhibitors of three molecular-structural classes with mostly weak inhibitory activity are known. Target repurposing is a strategy that transfers knowledge gained from a well-studied protein family to under-studied targets of phylogenetic relation. Forty-eight human ABC transporters are known that may harbor structural motifs similar to ECFTs to which particularly multitarget compounds may bind. We assessed 31 multitarget compounds which together target the entire druggable human ABC transporter proteome against ECFTs, of which nine showed inhibitory activity (hit rate 29.0%) and four demonstrated moderate to strong inhibition of an ECFT (IC50 values between 4.28 and 50.2 µM) as well as antibacterial activity against ECFT-expressing Streptococcus pneumoniae. Here, ivermectin was the most potent candidate (MIC95: 22.8 µM), and analysis of five ivermectin derivatives revealed moxidectin as one of the most potent ECFT-targeting antibacterial agents (IC50: 2.23 µM; MIC95: 2.91 µM). Distinct molecular-structural features of avermectins and derivatives as well as the differential biological response of the hit compounds in general provided first indications with respect to the structure-activity relationships and mode of action, respectively.
Collapse
Affiliation(s)
- Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education Augsburg, Augsburg University Medicine, Augsburg, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Katja Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Marcel Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
7
|
Stefan SM, Rafehi M. Medicinal polypharmacology-a scientific glossary of terminology and concepts. Front Pharmacol 2024; 15:1419110. [PMID: 39092220 PMCID: PMC11292611 DOI: 10.3389/fphar.2024.1419110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
Medicinal polypharmacology is one answer to the complex reality of multifactorial human diseases that are often unresponsive to single-targeted treatment. It is an admittance that intrinsic feedback mechanisms, crosstalk, and disease networks necessitate drugs with broad modes-of-action and multitarget affinities. Medicinal polypharmacology grew to be an independent research field within the last two decades and stretches from basic drug development to clinical research. It has developed its own terminology embedded in general terms of pharmaceutical drug discovery and development at the intersection of medicinal chemistry, chemical biology, and clinical pharmacology. A clear and precise language of critical terms and a thorough understanding of underlying concepts is imperative; however, no comprehensive work exists to this date that could support researchers in this and adjacent research fields. In order to explore novel options, establish interdisciplinary collaborations, and generate high-quality research outputs, the present work provides a first-in-field glossary to clarify the numerous terms that have originated from various individual disciplines.
Collapse
Affiliation(s)
- Sven Marcel Stefan
- Medicinal Chemistry and Systems Polypharmacology, Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein (UKSH), Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education, Augsburg University Medicine, Augsburg, Germany
| |
Collapse
|
8
|
Stefan K, Namasivayam V, Stefan SM. Computer-aided pattern scoring - A multitarget dataset-driven workflow to predict ligands of orphan targets. Sci Data 2024; 11:530. [PMID: 38783061 PMCID: PMC11116543 DOI: 10.1038/s41597-024-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The identification of lead molecules and the exploration of novel pharmacological drug targets are major challenges of medical life sciences today. Genome-wide association studies, multi-omics, and systems pharmacology steadily reveal new protein networks, extending the known and relevant disease-modifying proteome. Unfortunately, the vast majority of the disease-modifying proteome consists of 'orphan targets' of which intrinsic ligands/substrates, (patho)physiological roles, and/or modulators are unknown. Undruggability is a major challenge in drug development today, and medicinal chemistry efforts cannot keep up with hit identification and hit-to-lead optimization studies. New 'thinking-outside-the-box' approaches are necessary to identify structurally novel and functionally distinctive ligands for orphan targets. Here we present a unique dataset that includes critical information on the orphan target ABCA1, from which a novel cheminformatic workflow - computer-aided pattern scoring (C@PS) - for the identification of novel ligands was developed. Providing a hit rate of 95.5% and molecules with high potency and molecular-structural diversity, this dataset represents a suitable template for general deorphanization studies.
Collapse
Affiliation(s)
- Katja Stefan
- University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Vigneshwaran Namasivayam
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| | - Sven Marcel Stefan
- University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology Division, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Medical University of Lublin, Department of Biopharmacy, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
9
|
Stefan SM, Rafehi M. Medicinal polypharmacology: Exploration and exploitation of the polypharmacolome in modern drug development. Drug Dev Res 2024; 85:e22125. [PMID: 37920929 DOI: 10.1002/ddr.22125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
At the core of complex and multifactorial human diseases, such as cancer, metabolic syndrome, or neurodegeneration, are multiple players that cross-talk in robust biological networks which are intrinsically resilient to alterations. These multifactorial diseases are characterized by sophisticated feedback mechanisms which manifest cellular imbalance and resistance to drug therapy. By adhering to the specificity paradigm ("one target-one drug concept"), research focused for many years on drugs with very narrow mechanisms of action. This narrow focus promoted therapy ineffectiveness and resistance. However, modern drug discovery has evolved over the last years, increasingly emphasizing integral strategies for the development of clinically effective drugs. These integral strategies include the controlled engagement of multiple targets to overcome therapy resistance. Apart from the additive or even synergistic effects in therapy, multitarget drugs harbor molecular-structural attributes to explore orphan targets of which intrinsic substrates/physiological role(s) and/or modulators are unknown for future therapy purposes. We designated this multidisciplinary and translational research field between medicinal chemistry, chemical biology, and molecular pharmacology as 'medicinal polypharmacology'. Medicinal polypharmacology emerged as alternative approach to common single-targeted pharmacology stretching from basic drug and target identification processes to clinical evaluation of multitarget drugs, and the exploration and exploitation of the 'polypharmacolome' is at the forefront of modern drug development research.
Collapse
Affiliation(s)
- Sven Marcel Stefan
- Drug Development and Chemical Biology, Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Pathology, Section of Neuropathology and Oslo University Hospital, University of Oslo, Oslo, Norway
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Muhammad Rafehi
- Department of Medical Education, Augsburg University Medicine, Augsburg, Germany
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|