1
|
Merdzo I, Travagin F, Boccalon M, Alessio E, Lattuada L, Baranyai Z, Giovenzana GB. TRASUTA: The Effect of the Structural Rigidity of a Mesocyclic AAZTA-like Chelating Agent on the Thermodynamic, Kinetic, and Structural Properties of Some Divalent Metal and Ga 3+ Complexes. Inorg Chem 2024; 63:12525-12537. [PMID: 38905138 DOI: 10.1021/acs.inorgchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mesocyclic chelating agents such as AAZTA and its derivatives have been recently reported to overcome the relatively low thermodynamic stability of metal complexes of acyclic chelating agents and the slow complexation kinetics of macrocyclic chelating agents. This work reports the preparation of a spirobicyclic hexadentate AAZTA-like chelating agent (TRASUTA) and the investigation of the thermodynamic, kinetic, and structural properties of the corresponding chelates with the PET-relevant Ga3+ and selected metal ions. A combination of analytical techniques allowed identification of a coordination isomerization process, involving the coordinating side arms and the inversion of a nitrogen atom and leading to lower thermodynamic and kinetic inertness with respect to mononuclear mesocyclic analogues. The bicyclic system of TRASUTA retains significant dynamics despite the conformational constraint imposed by the spiro-fusion, resulting in a lower stability of the corresponding metal chelates.
Collapse
Affiliation(s)
- Ileana Merdzo
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, Colleretto Giacosa 10010, (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| |
Collapse
|
2
|
[111In]In/[177Lu]Lu-AAZTA5-LM4 SST2R-Antagonists in Cancer Theranostics: From Preclinical Testing to First Patient Results. Pharmaceutics 2023; 15:pharmaceutics15030776. [PMID: 36986637 PMCID: PMC10053881 DOI: 10.3390/pharmaceutics15030776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent radiometals of clinical interest, such as In-111 (for SPECT/CT) or Lu-177 (for radionuclide therapy). After labeling, the preclinical profiles of [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 were compared in HEK293-SST2R cells and double HEK293-SST2R/wtHEK293 tumor-bearing mice using [111In]In-DOTA-LM3 and [177Lu]Lu-DOTA-LM3 as references. The biodistribution of [177Lu]Lu-AAZTA5-LM4 was additionally studied for the first time in a NET patient. Both [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 displayed high and selective targeting of the HEK293-SST2R tumors in mice and fast background clearance via the kidneys and the urinary system. This pattern was reproduced for [177Lu]Lu-AAZTA5-LM4 in the patient according to SPECT/CT results in a monitoring time span of 4–72 h pi. In view of the above, we may conclude that [177Lu]Lu-AAZTA5-LM4 shows promise as a therapeutic radiopharmaceutical candidate for SST2R-expressing human NETs, based on previous [68Ga]Ga-DATA5m-LM4 PET/CT, but further studies are needed to fully assess its clinical value. Furthermore, [111In]In-AAZTA5-LM4 SPECT/CT may represent a legitimate alternative diagnostic option in cases where PET/CT is not available.
Collapse
|
3
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α-Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022; 61:e202207120. [PMID: 36073561 PMCID: PMC9828418 DOI: 10.1002/anie.202207120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/12/2023]
Abstract
Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .
Collapse
Affiliation(s)
- Dávid Horváth
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14010DebrecenHungary
| | | | - Dezsö Szikra
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - György Trencsényi
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - Nicola Demitri
- Elettra-Sincrotrone TriesteS.S. 14 Km 163.5 in Area Science Park34149Basovizza (TS)Italy
| | - Nicol Guidolin
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Alessandro Maiocchi
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Simona Ghiani
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Fabio Travagin
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Zsolt Baranyai
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| |
Collapse
|
4
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α‐Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dávid Horváth
- University of Debrecen Department of Physical Chemistry HUNGARY
| | | | | | | | - Nicola Demitri
- Elettra Sincrotrone Trieste SCpA Elettra Sincrotrone Trieste SCpA ITALY
| | | | | | | | - Fabio Travagin
- Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco ITALY
| | - Giovanni Battista Giovenzana
- Università degli Studi del Piemonte Orientale Amedeo Avogadro Facoltà di Farmacia: Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco Dipartimento di Scienze del Farmaco Largo Donegani 2/3Via Bovio 6 28100 Novara ITALY
| | | |
Collapse
|
5
|
Fersing C, Masurier N, Rubira L, Deshayes E, Lisowski V. AAZTA-Derived Chelators for the Design of Innovative Radiopharmaceuticals with Theranostic Applications. Pharmaceuticals (Basel) 2022; 15:234. [PMID: 35215346 PMCID: PMC8879111 DOI: 10.3390/ph15020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of 68Ga and 177Lu radiochemistry, theranostic approaches in modern nuclear medicine enabling patient-centered personalized medicine applications have been growing in the last decade. In conjunction with the search for new relevant molecular targets, the design of innovative chelating agents to easily form stable complexes with various radiometals for theranostic applications has gained evident momentum. Initially conceived for magnetic resonance imaging applications, the chelating agent AAZTA features a mesocyclic seven-membered diazepane ring, conferring some of the properties of both acyclic and macrocyclic chelating agents. Described in the early 2000s, AAZTA and its derivatives exhibited interesting properties once complexed with metals and radiometals, combining a fast kinetic of formation with a slow kinetic of dissociation. Importantly, the extremely short coordination reaction times allowed by AAZTA derivatives were particularly suitable for short half-life radioelements (i.e., 68Ga). In view of these particular characteristics, the scope of this review is to provide a survey on the design, synthesis, and applications in the nuclear medicine/radiopharmacy field of AAZTA-derived chelators.
Collapse
Affiliation(s)
- Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Nicolas Masurier
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Vincent Lisowski
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
6
|
Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:443-475. [PMID: 35003885 PMCID: PMC8727880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Lutetium-177 [T½ = 6.76 d; Eβ (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in 177Lu-radiopharmacy with a focus on 177Lu produced via direct 176Lu (n, γ) 177Lu nuclear reaction in medium flux research reactors. The specific nuances of 177Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable in vivo stability. Traditional bifunctional chelators (BFCs) that are used for 177Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various 177Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent 177Lu-based radiopharmaceuticals that have been prepared using medium specific activity 177Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity 177Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
7
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
8
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
9
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
10
|
Klasen B, Lemcke D, Mindt TL, Gasser G, Rösch F. Development and in vitro evaluation of new bifunctional 89Zr-chelators based on the 6-amino-1,4-diazepane scaffold for immuno-PET applications. Nucl Med Biol 2021; 102-103:12-23. [PMID: 34242949 DOI: 10.1016/j.nucmedbio.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Combination of hydroxamate bearing side chains with the 6-amino-1,4-diazepane scaffold provides a promising strategy for fast and stable 89Zr-labeling of antibodies. Following this approach, we hereby present the development, labeling kinetics and in vitro complex stability of three resulting bifunctional chelator derivatives both stand-alone and coupled to a model protein in comparison to different linear deferoxamine (DFO) derivatives. METHODS The novel 89Zr-chelator Hy3ADA5 was prepared via amide-coupling of separately synthesized 6-amino-1,4-diazepane-6-pentanoic acid and hydroxamate-containing side chains. Two further bifunctional derivatives were synthesized by extending the resulting system with either a squaramide- or p-isothiocyanatophenyl moiety for simplified binding to proteins. After coupling to a model antibody and purification, the resulting immunoconjugates as well as the unbound chelator derivatives were 89Zr-labeled at room temperature (RT) and neutral pH. For comparison, different DFO derivatives were analogously coupled, purified and radiolabeled. In vitro complex stability of the resulting radioconjugates was investigated in phosphate buffered saline (PBS) and human serum at 37 °C over a period of 7 days. RESULTS 89Zr-labeling of the novel unbound Hy3ADA5 derivatives indicated rapid complexation kinetics resulting in high radiochemical conversions (RCC) of 84-94% after 90 min. Similar or even faster radiolabeling with slightly increased maximum yields was obtained using the DFO-analogues. Initially, [89Zr]Zr-DFO*-p-Ph-NCS showed a delayed formation, nevertheless reaching almost quantitative complexation. Radiolabeling of the corresponding immunoconjugates Hy3ADA5-SA-mAb and Hy3ADA5-p-Ph-NCS-mAb resulted in 82.0 ± 1.1 and 89.2 ± 0.7% RCC, respectively after 90 min representing high but slightly lower labeling efficiency compared to the DFO- and DFO*-functionalized analogues. All examined radioimmunoconjugates showed very high in vitro complex stability both in human serum and PBS, providing no significant release of the radiometal. In the case of unbound chelators, however, the p-Ph-NCS-functionalized derivatives indicated considerable instability in human serum already after 1 h. CONCLUSION The novel chelator derivatives based on hydroxamate-functionalized 6-amino-1,4-diazepane revealed fast and high yielding 89Zr-labeling kinetics as well as high in vitro complex stability both stand-alone and coupled to an antibody. Therefore, Hy3ADA5 represents a promising tool for radiolabeling of biomolecules such as antibodies at mild conditions for immuno-PET applications.
Collapse
Affiliation(s)
- Benedikt Klasen
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany.
| | - Daniel Lemcke
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Paris, France
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany.
| |
Collapse
|
11
|
Travagin F, Lattuada L, Giovenzana GB. AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Klasen B, Moon ES, Rösch F. AAZTA 5-squaramide ester competing with DOTA-, DTPA- and CHX-A″-DTPA-analogues: Promising tool for 177Lu-labeling of monoclonal antibodies under mild conditions. Nucl Med Biol 2021; 96-97:80-93. [PMID: 33839678 DOI: 10.1016/j.nucmedbio.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Combining the advantages of both cyclic and acyclic chelator systems, AAZTA (1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) is well suited for complexation of various diagnostic and therapeutic radiometals such as gallium-68, scandium-44 and lutetium-177 under mild conditions. Due to its specificity for primary amines and pH dependent binding properties, squaric acid (SA) represents an excellent tool for selective coupling of the appropriate chelator to different target vectors. Therefore, the aim of this study was to evaluate radiolabeling properties of the novel bifunctional AAZTA5-SA being coupled to a model antibody (bevacizumab) in comparison to DOTA-SA, DTPA-p-Bn-SA and CHX-A″-DTPA-p-Bn-SA using the therapeutic nuclide lutetium-177. METHODS AND RESULTS As proof-of-concept, bevacizumab was first functionalized with AAZTA5-SA, DOTA-SA, DTPA-p-Bn-SA or CHX-A″-DTPA-p-Bn-SA. After purification via fractionated size exclusion chromatography (SEC), the corresponding immunoconjugates were subsequently radiolabeled with lutetium-177 at pH 7 and room temperature (RT) as well as 37 °C. After 90 min, labeling of AAZTA5-SA-mAb resulted in almost quantitative radiochemical yields (RCY) of >98% and >99%, respectively. Formation of [177Lu]Lu-DTPA-p-Bn-SA-mAb indicated rapid labeling kinetics reaching similar yields at RT already after 30 min. Fast but incomplete radiolabeling of the CHX-A″-analogue could be observed with a yield of 74% after 10 min and no further significant increase. In contrast, 177Lu-labeling of DOTA-SA-mAb showed negligible radiochemical yields of <2% both at room temperature and 37 °C. In vitro complex stability measurements of [177Lu]Lu-AAZTA5-SA-mAb at 37 °C indicated >94% protein bound activity in human serum and >92% in phosphate buffered saline (PBS), respectively within 15 days. [177Lu]Lu-DTPA-p-Bn-SA-mAb and [177Lu]Lu-CHX-A″-DTPA-p-Bn-SA-mAb revealed similar to even slightly higher in vitro stability in both media. CONCLUSION Coupling of AAZTA5-SA to the monoclonal antibody bevacizumab allowed for 177Lu-labeling with almost quantitative radiochemical yields both at room temperature and 37 °C. Within 15 days, the resulting radioconjugate indicated very high in vitro complex stability both in human serum and PBS. Therefore, AAZTA5-SA is a promising tool for 177Lu-labeling of sensitive biomolecules such as antibodies for theranostic applications.
Collapse
Affiliation(s)
- Benedikt Klasen
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Euy Sung Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
13
|
Preliminary Study of a 1,5-Benzodiazepine-Derivative Labelled with Indium-111 for CCK-2 Receptor Targeting. Molecules 2021; 26:molecules26040918. [PMID: 33572353 PMCID: PMC7916174 DOI: 10.3390/molecules26040918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK-2R) is overexpressed in several human cancers but displays limited expression in normal tissues. For this reason, it is a suitable target for developing specific radiotracers. In this study, a nastorazepide-based ligand functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator (IP-001) was synthesized and labelled with indium-111. The radiolabeling process yielded >95% with a molar activity of 10 MBq/nmol and a radiochemical purity of >98%. Stability studies have shown a remarkable resistance to degradation (>93%) within 120 h of incubation in human blood. The in vitro uptake of [111In]In-IP-001 was assessed for up to 24 h on a high CCK-2R-expressing tumor cell line (A549) showing maximal accumulation after 4 h of incubation. Biodistribution and single photon emission tomography (SPECT)/CT imaging were evaluated on BALB/c nude mice bearing A549 xenograft tumors. Implanted tumors could be clearly visualized after only 4 h post injection (2.36 ± 0.26% ID/cc), although a high amount of radiotracer was also found in the liver, kidneys, and spleen (8.25 ± 2.21%, 6.99 ± 0.97%, and 3.88 ± 0.36% ID/cc, respectively). Clearance was slow by both hepatobiliary and renal excretion. Tumor retention persisted for up to 24 h, with the tumor to organs ratio increasing over-time and ending with a tumor uptake (1.52 ± 0.71% ID/cc) comparable to liver and kidneys.
Collapse
|
14
|
Ghiani S, Hawala I, Szikra D, Trencsényi G, Baranyai Z, Nagy G, Vágner A, Stefania R, Pandey S, Maiocchi A. Synthesis, radiolabeling, and pre-clinical evaluation of [ 44Sc]Sc-AAZTA conjugate PSMA inhibitor, a new tracer for high-efficiency imaging of prostate cancer. Eur J Nucl Med Mol Imaging 2021; 48:2351-2362. [PMID: 33420915 DOI: 10.1007/s00259-020-05130-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of this work was to demonstrate the suitability of AAZTA conjugated to PSMA inhibitor (B28110) labeled with scandium-44 as a new PET tracer for diagnostic imaging of prostate cancer. BACKGROUND Nowadays, scandium-44 has received significant attention as a potential radionuclide with favorable characteristics for PET applications. A polyaminopolycarboxylate heptadentate ligand based on a 1,4-diazepine scaffold (AAZTA) has been thoroughly studied as chelator for Gd3+ ions for MRI applications. The excellent results of the equilibrium, kinetic, and labeling studies led to a preliminary assessment of the in vitro and in vivo behavior of [44Sc][Sc-(AAZTA)]- and two derivatives, i.e., [44Sc][Sc (CNAAZTA-BSA)] and [44Sc][Sc (CNAAZTA-cRGDfK)]. RESULTS B28110 was synthesized by hybrid approach, combining solid-phase peptide synthesis (SPPS) and solution chemistry to obtain high purity (97%) product with an overall yield of 9%. Subsequently, the radioactive labeling was performed with scandium-44 produced from natural calcium target in cyclotron, in good radiochemical yields (RCY) under mild condition (pH 4, 298 K). Stability study in human plasma showed good RCP% of [44Sc]Sc-B28110 up to 24 h (94.32%). In vivo PET/MRI imaging on LNCaP tumor-bearing mice showed high tracer accumulation in the tumor regions as early as 20 min post-injection. Ex vivo biodistribution studies confirmed that the accumulation of 44Sc-PSMA-617 was two-fold lower than that of the radiolabeled B28110 probes. CONCLUSIONS This work demonstrated the suitability of B28110 for the complexation with scandium-44 at room temperature and the high performance of the resulting new tracer based on AAZTA chelator for the diagnosis of prostate cancer using PET.
Collapse
Affiliation(s)
- S Ghiani
- Bracco Research Centre, Bracco Imaging SpA, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy.
| | - I Hawala
- Dipartimento di Biotecnologie Molecolari e Scienze per la salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - D Szikra
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - G Trencsényi
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Z Baranyai
- Bracco Research Centre, Bracco Imaging SpA, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - G Nagy
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - A Vágner
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - R Stefania
- Dipartimento di Biotecnologie Molecolari e Scienze per la salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - S Pandey
- Bracco Research USA Inc., 259 Prospect Plains Rd., Bldg. H, Monroe Township, NJ, 08831, USA
| | - A Maiocchi
- Bracco SpA, Via Caduti di Marcinelle, 13, 20134, Milan, Italy
| |
Collapse
|
15
|
Pfister J, Bata R, Hubmann I, Hörmann AA, Gsaller F, Haas H, Decristoforo C. Siderophore Scaffold as Carrier for Antifungal Peptides in Therapy of Aspergillus fumigatus Infections. J Fungi (Basel) 2020; 6:E367. [PMID: 33334084 PMCID: PMC7765500 DOI: 10.3390/jof6040367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Antifungal resistance of human fungal pathogens represents an increasing challenge in modern medicine. Short antimicrobial peptides (AMP) display a promising class of antifungals with a different mode of action, but lack target specificity and metabolic stability. In this study the hexapeptide PAF26 (Ac-dArg-dLys-dLys-dTrp-dPhe-dTrp-NH2) and the three amino acid long peptide NLF (H2N-Asn-Leu-dPhe-COOH) were coupled to diacetylfusarinine C (DAFC), a derivative of the siderophore triacetylfusarinine C (TAFC) of Aspergillus fumigatus, to achieve targeted delivery for treatment of invasive aspergillosis. Conjugated compounds in various modifications were labelled with radioactive gallium-68 to perform in vitro and in vivo characterizations. LogD, serum stability, uptake- growth promotion- and minimal inhibitory concentration assays were performed, as well as in vivo stability tests and biodistribution in BALB/c mice. Uptake and growth assays revealed specific internalization of the siderophore conjugates by A. fumigatus. They showed a high stability in human serum and also in the blood of BALB/c mice but metabolites in urine, probably due to degradation in the kidneys. Only PAF26 showed growth inhibition at 8 µg/ml which was lost after conjugation to DAFC. Despite their lacking antifungal activity conjugates based on a siderophore scaffold have a potential to provide the basis for a new class of antifungals, which allow the combination of imaging by using PET/CT with targeted treatment, thereby opening a theranostic approach for personalized therapy.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Roland Bata
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Medical University Innsbruck, 6020 Innsbruck, Austria; (F.G.); (H.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, 6020 Innsbruck, Austria; (F.G.); (H.H.)
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| |
Collapse
|
16
|
Klingler M, Hörmann AA, Rangger C, Desrues L, Castel H, Gandolfo P, von Guggenberg E. Stabilization Strategies for Linear Minigastrin Analogues: Further Improvements via the Inclusion of Proline into the Peptide Sequence. J Med Chem 2020; 63:14668-14679. [PMID: 33226806 PMCID: PMC7734625 DOI: 10.1021/acs.jmedchem.0c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Minigastrin (MG) analogues, known for their high potential to target cholecystokinin-2 receptor (CCK2R) expressing tumors, have limited clinical applicability due to low enzymatic stability. By introducing site-specific substitutions within the C-terminal receptor-binding sequence, reduced metabolization and improved tumor targeting can be achieved. In this work, the influence of additional modification within the N-terminal sequence has been explored. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R ligands with proline substitution at different positions were synthesized. Substitution did not affect CCK2R affinity, and the conjugates labeled with indium-111 and lutetium-177 showed a high enzymatic stability in different incubation media as well as in vivo (57-79% intact radiopeptide in blood of BALB/c mice at 1 h p.i.) combined with enhanced tumor uptake (29-46% IA/g at 4 h in xenografted BALB/c nude mice). The inclusion of Pro contributes significantly to the development of CCK2R ligands with optimal targeting properties for application in targeted radiotherapy.
Collapse
Affiliation(s)
- Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anton A Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Laurence Desrues
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Hélène Castel
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Pierrick Gandolfo
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Hofstetter M, Moon ES, D'Angelo F, Geissbühler L, Alberts I, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. Effect of the versatile bifunctional chelator AAZTA 5 on the radiometal labelling properties and the in vitro performance of a gastrin releasing peptide receptor antagonist. EJNMMI Radiopharm Chem 2020; 5:29. [PMID: 33258012 PMCID: PMC7704979 DOI: 10.1186/s41181-020-00115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastrin Releasing Peptide receptor (GRPr)-based radioligands have shown great promise for diagnostic imaging of GRPr-positive cancers, such as prostate and breast. The present study aims at developing and evaluating a versatile GRPr-based probe for both PET/SPECT imaging as well as intraoperative and therapeutic applications. The influence of the versatile chelator AAZTA5 on the radiometal labelling properties and the in vitro performance of the generated radiotracers were thoroughly investigated. The GRPr-based antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was functionalized with the chelator 6-[Bis (carboxymethyl)amino]-1,4-bis (carboyxmethyl)-6-methyl-1,4-diazepane (AAZTA5) through the spacer 4-amino-1-carboxymethyl-piperidine (Pip) to obtain AAZTA5-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (LF1). LF1 was radiolabelled with gallium-68 (PET), indium-111 (SPECT, intraoperative applications) and lutetium-177 (therapy, SPECT). In vitro evaluation included stability studies, determination of lipophilicity, protein-binding studies, determination of Kd and Bmax as well as internalization studies using the epithelial human prostate cancer cell line PC3. In vitro monotherapy as well as combination therapy studies were further performed to assess its applicability as a theranostic compound. Results LF1 was labelled with gallium-68, indium-111 and lutetium-177 within 5 min at room temperature (RT). The apparent molar activities (Am) were ranging between 50 and 60 GBq/μmol for the 68Ga-labelled LF1, 10–20 GBq/μmol for the 111In- and 177Lu-labelled LF1. The radiotracers were stable for a period of 4 h post labeling exhibiting a hydrophilic profile with an average of a LogDoctanol/PBS of − 3, while the bound activity to the human serum protein was approximately 10%. 68/natGa-LF1, 177/natLu-LF1 and 111/natIn-LF1 exhibited high affinity for the PC3 cells, with Kd values of 16.3 ± 2.4 nM, 10.3 ± 2.73 nM and 5.2 ± 1.9 nM, respectively, and the required concentration of the radiotracers to saturate the receptors (Bmax) was between 0.5 and 0.8 nM which corresponds to approximately 4 × 105 receptors per cell. Low specific internalization rate was found in cell culture, while the total specific cell surface bound uptake always exceeded the internalized activity. In vitro therapy studies showed that inhibition of PC3 cells growth is somewhat more efficient when combination of 177Lu-labelled LF1 with rapamycin is applied compared to 177Lu-laballed LF1 alone. Conclusion Encouraged by these promising in vitro data, preclinical evaluation of the LF1 precursor are planned in tumour models in vivo.
Collapse
Affiliation(s)
- Michael Hofstetter
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Euy Sung Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg - University Mainz, Mainz, Germany
| | - Fabio D'Angelo
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Lucien Geissbühler
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg - University Mainz, Mainz, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
18
|
Sinnes JP, Bauder-Wüst U, Schäfer M, Moon ES, Kopka K, Rösch F. 68Ga, 44Sc and 177Lu-labeled AAZTA 5-PSMA-617: synthesis, radiolabeling, stability and cell binding compared to DOTA-PSMA-617 analogues. EJNMMI Radiopharm Chem 2020; 5:28. [PMID: 33242189 PMCID: PMC7691401 DOI: 10.1186/s41181-020-00107-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs. RESULTS AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8-31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5-7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13-20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17-20%IA/106 cells) in the same assay. CONCLUSIONS The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.
Collapse
Affiliation(s)
- Jean-Philippe Sinnes
- Johannes Gutenberg-University Mainz, Department of Chemistry/ TRIGA, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Schäfer
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Euy Sung Moon
- Johannes Gutenberg-University Mainz, Department of Chemistry/ TRIGA, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Klaus Kopka
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,New address: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Frank Rösch
- Johannes Gutenberg-University Mainz, Department of Chemistry/ TRIGA, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Orteca G, Sinnes JP, Rubagotti S, Iori M, Capponi PC, Piel M, Rösch F, Ferrari E, Asti M. Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators: Synthesis and characterization of potential PET radiotracers. J Inorg Biochem 2019; 204:110954. [PMID: 31838188 DOI: 10.1016/j.jinorgbio.2019.110954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023]
Abstract
Curcumin metal complexes showed widespread applications in medicine and can be exploited as a lead structure for developing new tracers for nuclear medicine application. Herein, the synthesis, chemical characterization and radiolabelling with gallium-68 and scandium-44 of two new targeting vectors based on curcumin scaffolds and linked to the chelators 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine (AAZTA) are reported. Synthesis of the precursors could be achieved with a 13% and 11% yield and radiolabelling generally afforded rapid incorporation under mild conditions (>95%). Stability in physiological media (~75% after 2 h in human blood for [68Ga]Ga-/[44Sc]Sc-AAZTA-PC21 and ~60% for [68Ga]Ga-NODAGA-C21, respectively) are generally enhanced if compared to the previously radiolabelled analogues. MSn fragmentation experiments showed high stability of the AAZTA-PC21 structure mainly due to the pyrazole derivatization of the curcumin keto-enol moiety and a more feasible radiolabelling was noticed both with gallium-68 and scandium-44 mainly due to the AAZTA-chelator properties. [68Ga]Ga-NODAGA-C21 showed the most favorable lipophilicity value (logD = 1.3). Due to these findings, both compounds appear to be promising candidates for the imaging of colorectal cancer, but further studies such as in vitro uptake and in vivo biodistribution experiments are needed.
Collapse
Affiliation(s)
- Giulia Orteca
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Jean-Philippe Sinnes
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Sara Rubagotti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele Iori
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Pier Cesare Capponi
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Markus Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
20
|
Farkas E, Vágner A, Negri R, Lattuada L, Tóth I, Colombo V, Esteban-Gómez D, Platas-Iglesias C, Notni J, Baranyai Z, Giovenzana GB. PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Gallium-68 Complexes at Physiological pH. Chemistry 2019; 25:10698-10709. [PMID: 31149749 DOI: 10.1002/chem.201901512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Two structurally constrained chelators based on a fused bicyclic scaffold, 4-amino-4-methylperhydro-pyrido[1,2-a][1,4]diazepin-N,N',N'-triacetic acids [(4R*,10aS*)-PIDAZTA (L1) and (4R*,10aR*)-PIDAZTA (L2)], were designed for the preparation of GaIII -based radiopharmaceuticals. The stereochemistry of the ligand scaffold has a deep impact on the properties of the complexes, with unexpected [Ga(L2)OH] species being superior in terms of both thermodynamic stability and inertness. This peculiar behavior was rationalized on the basis of molecular modeling and appears to be related to a better fit in size of GaIII into the cavity of L2. Fast and efficient formation of the GaIII chelates at room temperature was observed at pH values between 7 and 8, which enables 68 Ga radiolabeling under truly physiological conditions (pH 7.4).
Collapse
Affiliation(s)
- Edit Farkas
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Adrienn Vágner
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Roberto Negri
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| | - Luciano Lattuada
- Bracco Imaging spa, Bracco Research Centre, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Imre Tóth
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary.,Dept. of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Valentina Colombo
- Dip. di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Dep. de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Dep. de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Johannes Notni
- Institute of Pathology, Technische Universität München, Trogerstrasse 18, 81675, Munich, Germany
| | - Zsolt Baranyai
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary.,Bracco Imaging spa, Bracco Research Centre, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Giovanni B Giovenzana
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| |
Collapse
|
21
|
Sinnes JP, Nagel J, Rösch F. AAZTA 5/AAZTA 5-TOC: synthesis and radiochemical evaluation with 68Ga, 44Sc and 177Lu. EJNMMI Radiopharm Chem 2019; 4:18. [PMID: 31659525 PMCID: PMC6675801 DOI: 10.1186/s41181-019-0068-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/16/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE AAZTA (1,4-bis (carboxymethyl)-6-[bis (carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) based chelators were initially developed in the context of magnetic resonance imaging. First radiochemical studies showed the capability of AAZTA to form stable complexes with radiolanthanides and moderately stable complexes with 68Ga. For a systematic comparison of the labelling capabilities with current diagnostic and therapeutic trivalent radiometals, AAZTA5 (1,4-bis (carboxymethyl)-6-[bis (carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine) was synthesized representing a bifunctional version with a pentanoic acid at the carbon-6 atom. To evaluate the effect of adding a targeting vector (TV) to the bifunctional chelator on the complex formation, AAZTA5-TOC was synthesized, radiolabeled and tested in comparison to the uncoupled AAZTA5. METHODS AAZTA5 was synthesized in a 5-step synthesis. It was coupled to the cyclic peptide TOC (Phe1-Tyr3 octreotide) via amide bound formation. AAZTA and AAZTA5-TOC complex formations with 68Ga, 44Sc and 177Lu were investigated at different pH, temperature and precursor amounts. Stability studies against human serum, PBS buffer, EDTA and DTPA were performed. RESULTS AAZTA5 and AAZTA5-TOC achieved quantitative labelling (> 95%) at room temperature in less than 5 min with all three nuclides at pH ranges from 4 to 5.5 with low precursor amounts of 1 to 10 nmol. [44Sc]Sc-AAZTA5 complexes as well as [44Sc]Sc-AAZTA5-TOC were completely stable. The 177Lu complexes of AAZTA5 and AAZTA5-TOC showed high stability comparable to the 44Sc complexes. In contrast, the [68Ga]Ga-AAZTA5 complex stability was rather low, but interestingly, [68Ga]Ga-AAZTA5-TOC was completely stable. CONCLUSION AAZTA5 appears to be a promising bifunctional chelator for 68Ga, 44Sc and 177Lu with outstanding labelling capabilities at room temperature. Complex stabilities are high in the case of 44Sc and 177Lu. While [68Ga]Ga-AAZTA complexes alone lacking stability, [68Ga]Ga-AAZTA5-TOC demonstrated high stability. The latter indicates an interesting feature of [68Ga]Ga-AAZTA5-labelled radiopharmaceuticals.
Collapse
Affiliation(s)
- Jean-Philippe Sinnes
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Johannes Nagel
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Frank Rösch
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
22
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
23
|
Klingler M, Decristoforo C, Rangger C, Summer D, Foster J, Sosabowski JK, von Guggenberg E. Site-specific stabilization of minigastrin analogs against enzymatic degradation for enhanced cholecystokinin-2 receptor targeting. Am J Cancer Res 2018; 8:2896-2908. [PMID: 29896292 PMCID: PMC5996369 DOI: 10.7150/thno.24378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Minigastrin (MG) analogs show high affinity to the cholecystokinin-2 receptor (CCK2R) and have therefore been intensively studied to find a suitable analog for imaging and treatment of CCK2R-expressing tumors. The clinical translation of the radioligands developed thus far has been hampered by high kidney uptake or low enzymatic stability. In this study, we aimed to develop new MG analogs with improved targeting properties stabilized against degradation through site-specific amino acid modifications. Method: Based on the lead structure of a truncated MG analog, four new MG derivatives with substitutions in the C-terminal part of the peptide (Trp-Met-Asp-Phe-NH2) were synthesized and derivatized with DOTA at the N-terminus for radiolabeling with trivalent radiometals. The in vitro properties of the new analogs were characterized by analyzing the lipophilicity, the protein binding, and the stability of the Indium-111 (111In)-labeled analogs in different media. Two different cell lines, AR42J cells physiologically expressing the rat CCK2R and A431 cells transfected with human CCK2R (A431-CCK2R), were used to study the receptor affinity and cell uptake. For the two most promising MG analogs, metabolic studies in normal BALB/c mice were carried out as well as biodistribution and imaging studies in tumor xenografted athymic BALB/c nude mice. Results: Two out of four synthesized peptide analogs (DOTA-MGS1 and DOTA-MGS4) showed retained receptor affinity and cell uptake when radiolabeled with 111In. These two peptide analogs, however, showed a different stability against enzymatic degradation in vitro and in vivo. When injected to normal BALB/c mice, for 111In-DOTA-MGS1 at 10 min post injection (p.i.) no intact radiopeptide was found in the blood, whereas for 111In-DOTA-MGS4 more than 75% was still intact. 111In-DOTA-MGS4 showed a clear increase in injected activity per gram tissue (IA/g) for A431-CCK2R xenografts (10.40±2.21% IA/g 4 h p.i.) when compared to 111In-DOTA-MGS1 (1.23±0.15% IA/g 4 h p.i.). The tumor uptake of 111In-DOTA-MGS4 was also combined with a low uptake in stomach and kidney leading to high-contrast NanoSPECT/CT images. Conclusion: Of the four new MG analogs developed, the best results in terms of enzymatic stability and increased tumor targeting were obtained with 111In-DOTA-MGS4 showing two substitutions with N-methylated amino acids. 111In-DOTA-MGS4 was also superior to other MG analogs reported thus far and seems therefore an extremely promising targeting molecule for theranostic use with alternative radiometals.
Collapse
|
24
|
Lipiński PFJ, Garnuszek P, Maurin M, Stoll R, Metzler-Nolte N, Wodyński A, Dobrowolski JC, Dudek MK, Orzełowska M, Mikołajczak R. Structural studies on radiopharmaceutical DOTA-minigastrin analogue (CP04) complexes and their interaction with CCK2 receptor. EJNMMI Res 2018; 8:33. [PMID: 29663167 PMCID: PMC5902437 DOI: 10.1186/s13550-018-0387-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Background The cholecystokinin receptor subtype 2 (CCK-2R) is an important target for diagnostic imaging and targeted radionuclide therapy (TRNT) due to its overexpression in certain cancers (e.g., medullary thyroid carcinoma (MTC)), thus matching with a theranostic principle. Several peptide conjugates suitable for the TRNT of MTC have been synthesized, including a very promising minigastrin analogue DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 (CP04). In this contribution, we wanted to see whether CP04 binding affinity for CCK-2R is sensitive to the type of the complexed radiometal, as well as to get insights into the structure of CP04-CCK2R complex by molecular modeling. Results In vitro studies demonstrated that there is no significant difference in CCK-2R binding affinity and specific cellular uptake between the CP04 conjugates complexed with [68Ga]Ga3+ or [177Lu]Lu3+. In order to investigate the background of this observation, we proposed a binding model of CP04 with CCK-2R based on homology modeling and molecular docking. In this model, the C-terminal part of the molecule enters the cavity formed between the receptor helices, while the N-terminus (including DOTA and the metal) is located at the binding site outlet, exposed in large extent to the solvent. The radiometals do not influence the conformation of the molecule except for the direct neighborhood of the chelating moiety. Conclusions The model seems to be in agreement with much of structure-activity relationship (SAR) studies reported for cholecystokinin and for CCK-2R-targeting radiopharmaceuticals. It also explains relative insensitivity of CCK-2R affinity for the change of the metal. The proposed model partially fits the reported site-directed mutagenesis data.
Collapse
Affiliation(s)
- Piotr F J Lipiński
- Neuropeptides Department, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 Str., 02-106, Warszawa, Poland.
| | - Piotr Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Michał Maurin
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Artur Wodyński
- Świerk Computing Centre, National Centre for Nuclear Research, A. Sołtana 7 Str., 05-400, Otwock, Poland.,Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Street, 03-195, Warszawa, Poland.,National Medicines Institute, Chełmska 30/34 Str., 00-725, Warszawa, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Monika Orzełowska
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Renata Mikołajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| |
Collapse
|
25
|
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:molecules22081282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
|
26
|
Summer D, Grossrubatscher L, Petrik M, Michalcikova T, Novy Z, Rangger C, Klingler M, Haas H, Kaeopookum P, von Guggenberg E, Haubner R, Decristoforo C. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug Chem 2017; 28:1722-1733. [PMID: 28462989 PMCID: PMC5481817 DOI: 10.1021/acs.bioconjchem.7b00182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting.
Collapse
Affiliation(s)
- Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Leo Grossrubatscher
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Tereza Michalcikova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck , Innrain 80-82, A-6020 Innsbruck, Austria
| | - Piriya Kaeopookum
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria.,Ministry of Science, Technology (MOST), Thailand Institute of Nuclear Technology (TINT) , Nakhonnayok 26120, Thailand
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Charron CL, Farnsworth AL, Roselt PD, Hicks RJ, Hutton CA. Recent developments in radiolabelled peptides for PET imaging of cancer. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Wu Z, Zha Z, Choi SR, Plössl K, Zhu L, Kung HF. New (68)Ga-PhenA bisphosphonates as potential bone imaging agents. Nucl Med Biol 2016; 43:360-71. [PMID: 27260777 DOI: 10.1016/j.nucmedbio.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In vivo positron emission tomography (PET) imaging of the bone using [(68)Ga]bisphosphonates may be a valuable tool for cancer diagnosis and monitoring therapeutic treatment. We have developed new [(68)Ga]bisphosphonates based on the chelating group, AAZTA (6-[bis(hydroxycarbonyl-methyl)amino]-1,4-bis(hydroxycarbonyl methyl)-6-methylperhydro-1,4-diazepine). METHOD Phenoxy derivative of AAZTA (2,2'-(6-(bis(carboxymethyl)amino)-6-((4-(2-carboxyethyl)phenoxy)methyl)-1,4-diazepane-1,4-diyl)diacetic acid), PhenA, 2, containing a bisphosphonate group (PhenA-BPAMD, 3, and PhenA-HBP, 4) was prepared. Labeling of these chelating agents with (68)Ga was evaluated. RESULTS The ligands reacted rapidly in a sodium acetate buffer with [(68)Ga]GaCl3 eluted from a commercially available (68)Ge/(68)Ga generator (pH4, >95% labeling at room temperature in 5min) to form [(68)Ga]PhenA-BPAMD, 3, and [(68)Ga]PhenA-HBP, 4. The improved labeling condition negates the need for further purification. The (68)Ga bisphosphonate biodistribution and autoradiography of bone sections in normal mice after an iv injection showed excellent bone uptake. CONCLUSION New (68)Ga labeled bisphosphonates may be useful as in vivo bone imaging agents in conjunction with positron emission tomography (PET).
Collapse
Affiliation(s)
- Zehui Wu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Karl Plössl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Lin Zhu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|