1
|
Wang W, Sun J, Zhao J, Cheng J, Jiang G, Wang Z. Up modulation of dose-averaged linear energy transfer by simultaneous integrated boost in carbon-ion radiotherapy for pancreatic carcinoma. J Appl Clin Med Phys 2024; 25:e14279. [PMID: 38259194 PMCID: PMC11163503 DOI: 10.1002/acm2.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Local recurrence in locally advanced pancreatic cancer (LAPC) after carbon-ion radiotherapy (CIRT) may partly attribute to low dose-averaged linear energy transfer (LETd), despite high CIRT dose. PURPOSE This study aimed to investigate the approaches to up-modulate the CIRT LETd and to evaluate the corresponding oxygen enhancement ratio (OER) reduction. METHODS 10 LAPCs that had been irradiated by CIRT with 67.5 Gy (RBE) in 15 fractions were selected. Their original plans were taken as the control plan for the LETd and OER investigations. Our considerations for up-modulating LETd were: (1) to deliver high doses to gross tumor volume core (GTVcore), while keeping dose constraints of the gastrointestinal (GI) tract in tolerance; (2) to put more Bragg-peak (BP) within the modulated targets; (3) to increase the BP density, high doses were necessary; (4) CIRT LETd could be effectively increased to small volumes; and (5) simultaneous integrated boost technique (SIB) could achieve the aforementioned tasks. The LETd and the corresponding OER distributions of each type of SIB plan were evaluated. RESULTS We delivered up to 100 Gy (RBE) to GTVcore using SIB. The mean LETd of GTV increased significantly by 21.3% from 47.8 to 58.0 keV/μm (p < 0.05). Meanwhile, the mean OER of GTVcore decreased by 6.6%, from 1.51 to 1.41 (p < 0.05). The GI LETdS in all modulated plans were not more than those in the original plans. CONCLUSIONS SIB could effectively increase CIRT LETd to LAPC, thus producing reduced OER, which may effectively overcome the radioresistance of LAPCs.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Institute of Modern PhysicsApplied Ion Beam Physics LaboratoryFudan UniversityShanghaiChina
| | - Jiayao Sun
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jingfang Zhao
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Radiation OncologyFudan University Cancer CenterShanghaiChina
| | - Jingyi Cheng
- Department of Nuclear MedicineShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Guo‐Liang Jiang
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Zheng Wang
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| |
Collapse
|
2
|
Hirata K, Watanabe S, Kitagawa Y, Kudo K. A Review of Hypoxia Imaging Using 18F-Fluoromisonidazole Positron Emission Tomography. Methods Mol Biol 2024; 2755:133-140. [PMID: 38319574 DOI: 10.1007/978-1-0716-3633-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor hypoxia is an essential factor related to malignancy, prognosis, and resistance to treatment. Positron emission tomography (PET) is a modality that visualizes the distribution of radiopharmaceuticals administered into the body. PET imaging with [18F]fluoromisonidazole ([18F]FMISO) identifies hypoxic tissues. Unlike [18F]fluorodeoxyglucose ([18F]FDG)-PET, fasting is not necessary for [18F]FMISO-PET, but the waiting time from injection to image acquisition needs to be relatively long (e.g., 2-4 h). [18F]FMISO-PET images can be displayed on an ordinary commercial viewer on a personal computer (PC). While visual assessment is fundamental, various quantitative indices such as tumor-to-muscle ratio have also been proposed. Several novel hypoxia tracers have been invented to compensate for the limitations of [18F]FMISO.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan.
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shiro Watanabe
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
3
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
5
|
PET imaging of pancreatic cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
7
|
Reeves KM, Song PN, Angermeier A, Della Manna D, Li Y, Wang J, Yang ES, Sorace AG, Larimer BM. 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clin Cancer Res 2021; 28:327-337. [PMID: 34615724 DOI: 10.1158/1078-0432.ccr-21-2394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of anti-tumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to non-invasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (Ifng, Gzmb, and Tnf), damage-associated molecular pattern receptors (Tlr2/4) and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to non-responsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.
Collapse
Affiliation(s)
| | | | - Allyson Angermeier
- Cellular, Molecular, and Developmental Biology, University of Alabama at Birmingham
| | | | - Yufeng Li
- Division of Preventive Medicine, University of Alabama at Birmingham
| | - Jianbo Wang
- Cellular, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham
| | - Anna G Sorace
- Radiology and Biomedical Engineering, University of Alabama at Birmingham
| | | |
Collapse
|
8
|
Lama-Sherpa TD, Das S, Hinshaw DC, Kammerud SC, Song PN, Alsheikh HA, Sorace AG, Samant RS, Shevde LA. Quantitative Longitudinal Imaging Reveals that Inhibiting Hedgehog Activity Alleviates the Hypoxic Tumor Landscape. Mol Cancer Res 2021; 20:150-160. [PMID: 34593607 DOI: 10.1158/1541-7786.mcr-21-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. IMPLICATIONS: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Shamik Das
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah C Kammerud
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A Alsheikh
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
10
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
11
|
Open and Minimal Approaches to Pancreatic Adenocarcinoma. Gastroenterol Res Pract 2020; 2020:4162657. [PMID: 32565781 PMCID: PMC7273371 DOI: 10.1155/2020/4162657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
Surgical options and approaches to pancreatic cancer are changing in the current era. Neoadjuvant treatment strategies for pancreatic cancer combined with the increased use of minimal access surgical techniques mean that the modern pancreatic surgeon requires mastering a number of surgical approaches with to optimally manage patients. Whilst traditional open surgery remains the most frequent approach for surgery, the specific steps during surgery may need to be modified in light of the aforementioned neoadjuvant treatments. Robotic and laparoscopic approaches to pancreatic resection are feasible, but these surgical methods remain in their infancy. In this review article, we summarise the current surgical approaches to pancreatic cancer and how these are adapted to the minimal access setting with discussion of the patient outcome data.
Collapse
|
12
|
Xiong X, Linhardt TJ, Liu W, Smith BJ, Sun W, Bauer C, Sunderland JJ, Graham MM, Buatti JM, Beichel RR. A 3D deep convolutional neural network approach for the automated measurement of cerebellum tracer uptake in FDG PET-CT scans. Med Phys 2019; 47:1058-1066. [PMID: 31855287 DOI: 10.1002/mp.13970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The purpose of this work was to assess the potential of deep convolutional neural networks in automated measurement of cerebellum tracer uptake in F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scans. METHODS Three different three-dimensional (3D) convolutional neural network architectures (U-Net, V-Net, and modified U-Net) were implemented and compared regarding their performance in 3D cerebellum segmentation in FDG PET scans. For network training and testing, 134 PET scans with corresponding manual volumetric segmentations were utilized. For segmentation performance assessment, a fivefold cross-validation was used, and the Dice coefficient as well as signed and unsigned distance errors were calculated. In addition, standardized uptake value (SUV) uptake measurement performance was assessed by means of a statistical comparison to an independent reference standard. Furthermore, a comparison to a previously reported active-shape-model-based approach was performed. RESULTS Out of the three convolutional neural networks investigated, the modified U-Net showed significantly better segmentation performance. It achieved a Dice coefficient of 0.911 ± 0.026, a signed distance error of 0.220 ± 0.103 mm, and an unsigned distance error of 1.048 ± 0.340 mm. When compared to the independent reference standard, SUV uptake measurements produced with the modified U-Net showed no significant error in slope and intercept. The estimated reduction in total SUV measurement error was 95.1%. CONCLUSIONS The presented work demonstrates the potential of deep convolutional neural networks in automated SUV measurement of reference regions. While it focuses on the cerebellum, utilized methods can be generalized to other reference regions like the liver or aortic arch. Future work will focus on combining lesion and reference region analysis into one approach.
Collapse
Affiliation(s)
- Xiaofan Xiong
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy J Linhardt
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Weiren Liu
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brian J Smith
- Department of Biostatistics, The University of Iowa, Iowa City, IA, 52242, USA
| | - Wenqing Sun
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Christian Bauer
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - John J Sunderland
- Department of Radiology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Michael M Graham
- Department of Radiology, The University of Iowa, Iowa City, IA, 52242, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Reinhard R Beichel
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|