1
|
Katal S, McKay MJ, Taubman K. PET Molecular Imaging in Breast Cancer: Current Applications and Future Perspectives. J Clin Med 2024; 13:3459. [PMID: 38929989 PMCID: PMC11205053 DOI: 10.3390/jcm13123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Positron emission tomography (PET) plays a crucial role in breast cancer management. This review addresses the role of PET imaging in breast cancer care. We focus primarily on the utility of 18F-fluorodeoxyglucose (FDG) PET in staging, recurrence detection, and treatment response evaluation. Furthermore, we delve into the growing interest in precision therapy and the development of novel radiopharmaceuticals targeting tumor biology. This includes discussing the potential of PET/MRI and artificial intelligence in breast cancer imaging, offering insights into improved diagnostic accuracy and personalized treatment approaches.
Collapse
Affiliation(s)
- Sanaz Katal
- Medical Imaging Department, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
| | - Michael J. McKay
- Northwest Regional Hospital, University of Tasmania, Burnie, TAS 7320, Australia;
- Northern Cancer Service, Northwest Regional Hospital, Burnie, TAS 7320, Australia
| | - Kim Taubman
- Medical Imaging Department, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
| |
Collapse
|
2
|
Hadebe B, Harry L, Ebrahim T, Pillay V, Vorster M. The Role of PET/CT in Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13040597. [PMID: 36832085 PMCID: PMC9955497 DOI: 10.3390/diagnostics13040597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer worldwide, with an estimated 2.3 million new cases (11.7%), followed by lung cancer (11.4%) The current literature and the National Comprehensive Cancer Network (NCCN) guidelines state that 18F-FDG PET/CT is not routine for early diagnosis of breast cancer, and rather PET/CT scanning should be performed for patients with stage III disease or when conventional staging studies yield non-diagnostic or suspicious results because this modality has been shown to upstage patients compared to conventional imaging and thus has an impact on disease management and prognosis. Furthermore, with the growing interest in precision therapy in breast cancer, numerous novel radiopharmaceuticals have been developed that target tumor biology and have the potential to non-invasively guide the most appropriate targeted therapy. This review discusses the role of 18F-FDG PET and other PET tracers beyond FDG in breast cancer imaging.
Collapse
Affiliation(s)
- Bawinile Hadebe
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Correspondence:
| | - Lerwine Harry
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Tasmeera Ebrahim
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Venesen Pillay
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| |
Collapse
|
3
|
Jing F, Liu G, Zhang R, Xue W, Lin J, Zhu H, Zhu Y, Wu C, Luo Y, Chen T, Li S, Bao M. PYY modulates the tumorigenesis and progression of colorectal cancer unveiled by proteomics. Am J Cancer Res 2022; 12:5500-5515. [PMID: 36628274 PMCID: PMC9827100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/20/2022] [Indexed: 01/12/2023] Open
Abstract
Despite decrease in mortality caused by colorectal cancer (CRC), there remains no effective therapeutic method for patients with CRC. We attempted to screen biomarkers with therapeutic values in CRC. Proteomic analysis was performed on tumor, tumor-adjacent, and normal tissues derived from five patients with colon adenocarcinoma (COAD) via label-free proteome profiling. Differentially expressed proteins (DEPs) were identified, and functional annotation was performed based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The effect of marker proteins on CRC was determined via cell function experiments and using tumor organoid models. The localization of the marker proteins was determined via immunofluorescence. A total of 126 DEPs were identified in COAD tissues compared with normal tissues, of which Peptide YY (PYY) overlapped among the tumor, adjacent, and normal groups. DEPs in the cancer group vs. normal group were enriched in the regulation of cell cycle checkpoint, developmental process, focal adhesion, and apoptosis-related pathways. The low expression of PYY in CRC tissues was verified via qRT-PCR, western blotting, and immunohistochemistry. Overexpression of PYY promoted apoptosis and inhibited the proliferation, migration, and invasion of HCT116 and HT29 cells. Furthermore, PYY was secreted by neurons and its supplementation suppressed tumor organoid growth in a dose-dependent manner. In conclusion, PYY exerted inhibitory action on CRC and could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Fangyan Jing
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Renyi Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Weisong Xue
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Jiabao Lin
- Department of Health Management, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Huacong Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Yu Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Chaosong Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Yang Luo
- Department of Urology, The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou 510900, Guangdong, China
| | - Tao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Shenglong Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Ming Bao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| |
Collapse
|
4
|
Role of Somatostatin Signalling in Neuroendocrine Tumours. Int J Mol Sci 2022; 23:ijms23031447. [PMID: 35163374 PMCID: PMC8836266 DOI: 10.3390/ijms23031447] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Somatostatin (SST) is a small peptide that exerts inhibitory effects on a wide range of neuroendocrine cells. Due to the fact that somatostatin regulates cell growth and hormone secretion, somatostatin receptors (SSTRs) have become valuable targets for the treatment of different types of neuroendocrine tumours (NETs). NETs are a heterogeneous group of tumours that can develop in various parts of the body, including the digestive system, lungs, and pituitary. NETs are usually slow growing, but they are often diagnosed in advanced stages and can display aggressive behaviour. The mortality rate of NETs is not outstandingly increased compared to other malignant tumours, even in the metastatic setting. One of the intrinsic properties of NETs is the expression of SSTRs that serve as drug targets for SST analogues (SSAs), which can delay tumour progression and downregulate hormone overproduction. Additionally, in many NETs, it has been demonstrated that the SSTR expression level provides a prognostic value in predicting a therapeutic response. Furthermore, higher a SSTR expression correlates with a better survival rate in NET patients. In recent studies, other epigenetic regulators affecting SST signalling or SSA–mTOR inhibitor combination therapy in NETs have been considered as novel strategies for tumour control. In conclusion, SST signalling is a relevant regulator of NET functionality. Alongside classical SSA treatment regimens, future advanced therapies and treatment modalities are expected to improve the disease outcomes and overall health of NET patients.
Collapse
|
5
|
Byun BH, Kim MH, Han YH, Jeong HJ. KSNM60 in Non-thyroidal Radionuclide Therapy: Leaping into the Future. Nucl Med Mol Imaging 2021; 55:203-209. [PMID: 34721713 DOI: 10.1007/s13139-021-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
This year, the Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary. Treatment, as well as diagnosis, has played a very important role in the development of nuclear medicine. Since I-131 was used for thyroid therapy in 1959, other radionuclide therapy is still being used, and attempts to use new radionuclide are increasing. In this review, we briefly summarize and introduce the therapies such as radioimmunotherapy, transarterial radioembolization, radionuclide therapy for neuroendocrine tumors, peptide receptor radionuclide therapy, control of metastatic bone pain, radiation synovectomy, radionuclide brachytherapy, alpha particle therapy, and boron neutron capture therapy, which has been being attempted so far in the field of nuclear medicine.
Collapse
Affiliation(s)
- Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Myoung Hyoun Kim
- Department of Nuclear Medicine, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do South Korea
| | - Yeon-Hee Han
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| |
Collapse
|
6
|
Fabritius MP, Geyer T, Ahmaddy F, Albert NL, Bartenstein P, Tiling R, Rübenthaler J, Holzgreve A. Breast Cancer Metastasis Mimicking Meningioma in 68Ga-DOTATOC PET/CT. Clin Nucl Med 2021; 46:922-923. [PMID: 34132678 DOI: 10.1097/rlu.0000000000003770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT 68Ga-DOTATOC PET/CT is a reliable imaging modality in the diagnosis and therapy planning of symptomatic meningiomas. We present a case of a 74-year-old woman where a supposed SSTR-positive sphenoid wing meningioma turned out to be a breast cancer metastasis. Our case shows that dural metastases from breast cancer might represent a clinical pitfall in 68Ga-DOTATOC PET/CT.
Collapse
Affiliation(s)
| | | | - Freba Ahmaddy
- Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Reinhold Tiling
- Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Adrien Holzgreve
- Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Zaccagna F, Grist JT, Quartuccio N, Riemer F, Fraioli F, Caracò C, Halsey R, Aldalilah Y, Cunningham CH, Massoud TF, Aloj L, Gallagher FA. Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances. Eur J Radiol 2021; 142:109842. [PMID: 34274843 DOI: 10.1016/j.ejrad.2021.109842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Molecular imaging techniques have rapidly progressed over recent decades providing unprecedented in vivo characterization of metabolic pathways and molecular biomarkers. Many of these new techniques have been successfully applied in the field of neuro-oncological imaging to probe tumor biology. Targeting specific signaling or metabolic pathways could help to address several unmet clinical needs that hamper the management of patients with brain tumors. This review aims to provide an overview of the recent advances in brain tumor imaging using molecular targeting with positron emission tomography and magnetic resonance imaging, as well as the role in patient management and possible therapeutic implications.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom; Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Corradina Caracò
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Halsey
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Yazeed Aldalilah
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom; Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Jokar N, Velikyan I, Ahmadzadehfar H, Rekabpour SJ, Jafari E, Ting HH, Biersack HJ, Assadi M. Theranostic Approach in Breast Cancer: A Treasured Tailor for Future Oncology. Clin Nucl Med 2021; 46:e410-e420. [PMID: 34152118 DOI: 10.1097/rlu.0000000000003678] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Breast cancer is the most frequent invasive malignancy and the second major cause of cancer death in female subjects mostly due to the considerable diagnostic delay and failure of therapeutic strategies. Thus, early diagnosis and possibility to monitor response to the treatment are of utmost importance. Identification of valid biomarkers, in particular new molecular therapeutic targets, that would allow screening, early patient identification, prediction of disease aggressiveness, and monitoring response to the therapeutic regimen has been in the focus of breast cancer research during recent decades. One of the intensively developing fields is nuclear medicine combining molecular diagnostic imaging and subsequent (radio)therapy in the light of theranostics. This review aimed to survey the current status of preclinical and clinical research using theranostic approach in breast cancer patients with potential to translate into conventional treatment strategies alone or in combination with other common treatments, especially in aggressive and resistant types of breast cancer. In addition, we present 5 patients with breast cancer who were refractory or relapsed after conventional therapy while presumably responded to the molecular radiotherapy with 177Lu-trastuzumab (Herceptin), 177Lu-DOTATATE, and 177Lu-FAPI-46.
Collapse
Affiliation(s)
- Narges Jokar
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Irina Velikyan
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Esmail Jafari
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Majid Assadi
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
9
|
Borja AJ, Hancin EC, Raynor WY, Ayubcha C, Detchou DK, Werner TJ, Revheim ME, Alavi A. A Critical Review of PET Tracers Used for Brain Tumor Imaging. PET Clin 2021; 16:219-231. [PMID: 33589386 DOI: 10.1016/j.cpet.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The brain is a common site for metastases as well as primary tumors. Although evaluation of these malignancies with contrast-enhanced MR imaging defines current clinical practice, 18F-fluorodeoxyglucose (FDG)-PET has shown considerable utility in this area. In addition, many other tracers targeting various aspects of tumor biology have been developed and tested. This article discusses recent developments in PET imaging and the anticipated role of FDG and other tracers in the assessment of brain tumors.
Collapse
Affiliation(s)
- Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Cyrus Ayubcha
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Donald K Detchou
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|