1
|
Courault P, Zimmer L, Lancelot S. Toward Functional PET Imaging of the Spinal Cord. Semin Nucl Med 2024:S0001-2998(24)00066-7. [PMID: 39181820 DOI: 10.1053/j.semnuclmed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
At present, spinal cord imaging primarily uses magnetic resonance imaging (MRI) or computed tomography (CT), but the greater sensitivity of positron emission tomography (PET) techniques and the development of new radiotracers are paving the way for a new approach. The substantial rise in publications on PET radiotracers for spinal cord exploration indicates a growing interest in the functional and molecular imaging of this organ. The present review aimed to provide an overview of the various radiotracers used in this indication, in preclinical and clinical settings. Firstly, we outline spinal cord anatomy and associated target pathologies. Secondly, we present the state-of-the-art of spinal cord imaging techniques used in clinical practice, with their respective strengths and limitations. Thirdly, we summarize the literature on radiotracers employed in functional PET imaging of the spinal cord. In conclusion, we propose criteria for an ideal radiotracer for molecular spinal cord imaging, emphasizing the relevance of multimodal hybrid cameras, and particularly the benefits of PET-MRI integration.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France; National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| |
Collapse
|
2
|
Wang H, Xie X, Duan Y, Chai L, Li K, Qiu J, Cheng Z. Rabbit systemic glucose metabolism map by total-body dynamic PET/CT technology. Nucl Med Commun 2023; 44:1144-1150. [PMID: 37706260 PMCID: PMC10631506 DOI: 10.1097/mnm.0000000000001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND This study evaluated total-body glucose metabolism in a preclinical lab animal, the rabbit, by employing a dynamic glucose metabolic image obtained with total-body fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET/computed tomography (PET/CT). METHODS The dynamic total-body PET/CT system was used to obtain glucose metabolic imaging from 10 sedated body-matched rabbits. The standard uptake value (SUV) of 18 F-FDG was used to evaluate glucose metabolism. In addition, the correlation between glucose metabolism and sexes was assessed, as well as metabolic differences between left- and right sides. RESULTS We found significant distribution heterogeneity of glucose in several organs across the entire body. There were no significant metabolic differences between sexes and between bilateral sides in the 10 rabbits. Thereafter, we assayed the major organ SUV changes by dynamic PET/CT of the major organs. The heart, liver, and urinary system showed more 18 F-FDG, whereas the skeletal muscle, brain, spinal cord, and lungs incorporated less 18 F-FDG. The phenotype of 18 F-FDG uptake was highly correlated with the physiological functions. The 18 F-FDG accumulation in urinary system were observed which could reflect the renal parenchyma glucose metabolism indirectly. However, the low 18 F-FDG uptake in the brain and spinal cord was due to sedation. CONCLUSION The total-body glucose metabolic atlas depicted with 18 F-FDG dynamic PET/CT may be used as a reference for assessing pathological 18 F-FDG uptake. Furthermore, this study could be a reference for preclinical research involving abnormality of glucose metabolism.
Collapse
Affiliation(s)
- Haochen Wang
- Department of General Surgery, the First Affiliated Hospital of Shandong First Medical University
| | - Xue Xie
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences and
| | - Yanhua Duan
- Department of Nuclear Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Leiying Chai
- Department of Nuclear Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Kun Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Jianfeng Qiu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences and
| | - Zhaoping Cheng
- Department of Nuclear Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Ni R, Straumann N, Fazio S, Dean-Ben XL, Louloudis G, Keller C, Razansky D, Ametamey S, Mu L, Nombela-Arrieta C, Klohs J. Imaging increased metabolism in the spinal cord in mice after middle cerebral artery occlusion. PHOTOACOUSTICS 2023; 32:100532. [PMID: 37645255 PMCID: PMC10461215 DOI: 10.1016/j.pacs.2023.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Serana Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Skawran S, Messerli M, Kotasidis F, Trinckauf J, Weyermann C, Kudura K, Ferraro DA, Pitteloud J, Treyer V, Maurer A, Huellner MW, Burger IA. Can Dynamic Whole-Body FDG PET Imaging Differentiate between Malignant and Inflammatory Lesions? Life (Basel) 2022; 12:life12091350. [PMID: 36143386 PMCID: PMC9501027 DOI: 10.3390/life12091350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Investigation of the clinical feasibility of dynamic whole-body (WB) [18F]FDG PET, including standardized uptake value (SUV), rate of irreversible uptake (Ki), and apparent distribution volume (Vd) in physiologic tissues, and comparison between inflammatory/infectious and cancer lesions. Methods: Twenty-four patients were prospectively included to undergo dynamic WB [18F]FDG PET/CT for clinically indicated re-/staging of oncological diseases. Parametric maps of Ki and Vd were generated using Patlak analysis alongside SUV images. Maximum parameter values (SUVmax, Kimax, and Vdmax) were measured in liver parenchyma and in malignant or inflammatory/infectious lesions. Lesion-to-background ratios (LBRs) were calculated by dividing the measurements by their respective mean in the liver tissue. Results: Seventy-seven clinical target lesions were identified, 60 malignant and 17 inflammatory/infectious. Kimax was significantly higher in cancer than in inflammatory/infections lesions (3.0 vs. 2.0, p = 0.002) while LBRs of SUVmax, Kimax, and Vdmax did not differ significantly between the etiologies: LBR (SUVmax) 3.3 vs. 2.9, p = 0.06; LBR (Kimax) 5.0 vs. 4.4, p = 0.05, LBR (Vdmax) 1.1 vs. 1.0, p = 0.18). LBR of inflammatory/infectious and cancer lesions was higher in Kimax than in SUVmax (4.5 vs. 3.2, p < 0.001). LBRs of Kimax and SUVmax showed a strong correlation (Spearman’s rho = 0.83, p < 0.001). Conclusions: Dynamic WB [18F]FDG PET/CT is feasible in a clinical setting. LBRs of Kimax were higher than SUVmax. Kimax was higher in malignant than in inflammatory/infectious lesions but demonstrated a large overlap between the etiologies.
Collapse
Affiliation(s)
- Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | | | - Josephine Trinckauf
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Weyermann
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Claraspital, 4058 Basel, Switzerland
| | - Daniela A. Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Janique Pitteloud
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, 5404 Baden, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Rossano S, Toyonaga T, Bini J, Nabulsi N, Ropchan J, Cai Z, Huang Y, Carson RE. Feasibility of imaging synaptic density in the human spinal cord using [ 11C]UCB-J PET. EJNMMI Phys 2022; 9:32. [PMID: 35503134 PMCID: PMC9065222 DOI: 10.1186/s40658-022-00464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Neuronal damage and synapse loss in the spinal cord (SC) have been implicated in spinal cord injury (SCI) and neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS). Current standards of diagnosis for SCI include CT or MRI imaging to evaluate injury severity. The current study explores the use of PET imaging with [11C]UCB-J, which targets the synaptic vesicle protein 2A (SV2A), in the human spinal cord, as a way to visualize synaptic density and integrity in vivo. RESULTS First, simulations of baseline and blocking [11C]UCB-J HRRT scans were performed, based on SC dimensions and SV2A distribution to predict VT, VND, and VS values. Next, human baseline and blocking [11C]UCB-J HRRT images were used to estimate these values in the cervical SC (cSC). Simulation results had excellent agreement with observed values of VT, VND, and VS from the real human data, with baseline VT, VND, and VS of 3.07, 2.15, and 0.92 mL/cm3, respectively, with a BPND of 0.43. Lastly, we explored full SC imaging with whole-body images. Using automated SC regions of interest (ROIs) for the full SC, cSC, and thoracic SC (tSC), the distribution volume ratio (DVR) was estimated using the brain gray matter as a reference region to evaluate SC SV2A density relative to the brain. In full body imaging, DVR values of full SC, cSC, and tSC were 0.115, 0.145, and 0.112, respectively. Therefore, measured [11C]UCB-J uptake, and thus SV2A density, is much lower in the SC than in the brain. CONCLUSIONS The results presented here provide evidence for the feasibility of SV2A PET imaging in the human SC, however, specific binding of [11C]UCB-J is low. Ongoing and future work include further classification of SV2A distribution in the SC as well as exploring higher-affinity PET radioligands for SC imaging.
Collapse
Affiliation(s)
- Samantha Rossano
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jason Bini
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Brancato V, Borrelli P, Alfano V, Picardi M, Mascalchi M, Nicolai E, Salvatore M, Aiello M. The impact of MR-based attenuation correction in spinal cord FDG-PET/MR imaging for neurological studies. Med Phys 2021; 48:5924-5934. [PMID: 34369590 PMCID: PMC9293017 DOI: 10.1002/mp.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Positron emission tomography (PET) attenuation correction (AC) in positron emission tomography‐magnetic resonance (PET/MR) scanners constitutes a critical and barely explored issue in spinal cord investigation, mainly due to the limitations in accounting for highly attenuating bone structures which surround the spinal canal. Our study aims at evaluating the clinical suitability of MR‐driven AC (MRAC) for 18‐fluorodeoxy‐glucose positron emission tomography (18F‐FDG‐PET) in spinal cord. Methods Thirty‐six patients, undergoing positron emission tomography‐computed tomography (PET/CT) and PET/MR in the same session for oncological examination, were retrospectively analyzed. For each patient, raw PET data from PET/MR scanner were reconstructed with 4‐ and 5‐class MRAC maps, generated by hybrid PET/MR system (PET_MRAC4 and PET_MRAC5, respectively, where PET_MRAC is PET images reconstructed using MR‐based attenuation correction map), and an AC map derived from CT data after a custom co‐registration pipeline (PET_rCTAC, where PET_rCTAC is PET images reconstructed using CT‐based attenuation correction map), which served as reference. Mean PET standardized uptake values (SUVm) were extracted from the three reconstructed PET images by regions of interest (ROIs) identified on T2‐weighted MRI, in the spinal cord, lumbar cerebrospinal fluid (CSF), and vertebral marrow at five levels (C2, C5, T6, T12, and L3). SUVm values from PET_MRAC4 and PET_MRAC5 were compared with each other and with the reference by means of paired t‐test, and correlated using Pearson's correlation (r) to assess their consistency. Cohen's d was calculated to assess the magnitude of differences between PET images. Results SUVmvalues from PET_MRAC4 were lower than those from PET_MRAC5 in almost all analyzed ROIs, with a mean difference ranging from 0.03 to 0.26 (statistically significant in the vertebral marrow at C2 and C5, spinal cord at T6 and T2, and CSF at L3). This was also confirmed by the effect size, with highest values at low spinal levels (d = 0.45 at T12 in spinal cord, d = 0.95 at L3 in CSF). SUVm values from PET_MRAC4 and PET_MRAC5 showed a very good correlation (0.81 < r < 0.97, p < 0.05) in all spinal ROIs. Underestimation of SUVm between PET_MRAC4 and PET_rCTAC was observed at each level, with a mean difference ranging from 0.02 to 0.32 (statistically significant in the vertebral marrow at C2 and T6, and CSF at L3). Although PET_MRAC5 underestimates PET_rCTAC (mean difference ranging from 0.02 to 0.3), an overall decrease in effect size could be observed for PET_MRAC5, mainly at lower spinal levels (T12, L3). SUVm from both PET_MRAC4 and PET_MRAC5 methods showed r value from good to very good with respect to PET_rCTAC (0.67 < r < 0.9 and 0.73 < r < 0.94, p < 0.05, respectively). Conclusions Our results showed that neglecting bones in AC can underestimate the FDG uptake measurement of the spinal cord. The inclusion of bones in MRAC is far from negligible and improves the AC in spinal cord, mainly at low spinal levels. Therefore, care must be taken in the spinal canal region, and the use of AC map reconstruction methods accounting for bone structures could be beneficial.
Collapse
Affiliation(s)
| | | | | | - Marco Picardi
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Mario Mascalchi
- «Mario Serio» Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | | | | | | |
Collapse
|