1
|
Mohammadpour S, Emami H, Rabiei R, Hosseini A, Moghaddasi H, Faeghi F, Bagherzadeh R. Image Analysis as tool for Predicting Colorectal Cancer Molecular Alterations: A Scoping Review. Mol Imaging Radionucl Ther 2025; 34:10-25. [PMID: 39917985 PMCID: PMC11827529 DOI: 10.4274/mirt.galenos.2024.86402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/25/2024] [Indexed: 02/16/2025] Open
Abstract
Objectives Among the most important diagnostic indicators of colorectal cancer; however, measuring molecular alterations are invasive and expensive. This study aimed to investigate the application of image processing to predict molecular alterations in colorectal cancer. Methods In this scoping review, we searched for relevant literature by searching the Web of Science, Scopus, and PubMed databases. The method of selecting the articles and reporting the findings was according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses; moreover, the Strengthening the Reporting of Observational Studies in Epidemiology checklist was used to assess the quality of the studies. Results Sixty seven out of 2,223 articles, 67 were relevant to the aim of the study, and finally 41 studies with sufficient quality were reviewed. The prediction of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), Neuroblastoma RAS Viral (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), Tumor Protein 53 (TP53), Adenomatous Polyposis Coli, and microsatellite instability (MSI) with the help of image analysis has received more attention than other molecular characteristics. The studies used computed tomography (CT), magnetic resonance imaging (MRI), and 18F-FDG positron emission tomography (PET)/CT with radionics and quantitative analysis to predict molecular alterations in colorectal cancer, analyzing features like texture, maximum standard uptake value, and MTV using various statistical methods. In 39 studies, there was a significant relationship between the features extracted from these images and molecular alterations. Different modalities were used to measure the area under the receiver operating characteristic curve for predicting the alterations in KRAS, MSI, BRAF, and TP53, with an average of 78, 81, 80 and 71%, respectively. Conclusion This scoping review underscores the potential of radiogenomics in predicting molecular alterations in colorectal cancer through non-invasive imaging modalities, like CT, MRI, and 18F-FDG PET/CT. The analysis of 41 studies showed the appropriate prediction of key alterations, such as KRAS, NRAS, BRAF, TP53, and MSI, highlighting the promise of radionics and texture features in enhancing predictive accuracy.
Collapse
Affiliation(s)
- Saman Mohammadpour
- Shahid Beheshti University Faculty of Medicine, Department of Health Information Technology and Management, Tehran, Iran
| | - Hassan Emami
- Shahid Beheshti University Faculty of Medicine, Department of Health Information Technology and Management, Tehran, Iran
| | - Reza Rabiei
- Shahid Beheshti University Faculty of Medicine, Department of Health Information Technology and Management, Tehran, Iran
| | - Azamossadat Hosseini
- Shahid Beheshti University Faculty of Medicine, Department of Health Information Technology and Management, Tehran, Iran
| | - Hamid Moghaddasi
- Shahid Beheshti University Faculty of Medicine, Department of Health Information Technology and Management, Tehran, Iran
| | - Fariborz Faeghi
- Shahid Beheshti University Faculty of Medicine, Department of Radiology Technology, Tehran, Iran
| | - Rafat Bagherzadeh
- Iran University of Medical Sciences Faculty of Medicine, Department of English Language, Tehran, Iran
| |
Collapse
|
2
|
Araujo RLC, Fonseca LG, Silva RO, Linhares MM, Uson Junior PLS. Molecular profiling and patient selection for the multimodal approaches for patients with resectable colorectal liver metastases. Hepatobiliary Surg Nutr 2024; 13:273-292. [PMID: 38617479 PMCID: PMC11007353 DOI: 10.21037/hbsn-22-616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2024]
Abstract
Colorectal cancer represents the third most common cancer and about 20% are diagnosed with synchronous metastatic disease. From a historical point of view, surgery remains the mainstream treatment for resectable colorectal liver metastases (CRLM). Furthermore, disease outcomes are improving due significant advances in systemic treatments and diagnostic methods. However, the optimal timing for neoadjuvant chemotherapy or upfront surgery for CRLM has not yet been established and remains an open question. Thus, patient selection combining image workouts, time of recurrence, positive lymph nodes, and molecular biomarkers can improve the decision-making process. Nevertheless, molecular profiling is rising as a promising field to be incorporated in the multimodal approach and guide patient selection and sequencing of treatment. Tumor biomakers, genetic profiling, and circulating tumor DNA have been used to offer as much personalized treatment as possible, based on the precision oncology concept of tailored care rather than a guideline-based therapy. This review article discusses the role of molecular pathology and biomarkers as prognostic and predictor factors in the diagnosis and treatment of resectable CRLM.
Collapse
Affiliation(s)
- Raphael L. C. Araujo
- Department of Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Hospital e Maternidade Brasil—Rede D’Or São Luiz, Santo André, SP, Brazil
- Department of Oncology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Leonardo G. Fonseca
- Hospital e Maternidade Brasil—Rede D’Or São Luiz, Santo André, SP, Brazil
- Department of Oncology, Instituto do Cancer do Estado de São Paulo, University of Sao Paulo, São Paulo, SP, Brazil
| | - Raphael Oliveira Silva
- Department of Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Oncology, Hospital Ministro Costa Cavalcanti, Foz do Iguaçu, PR, Brazil
| | | | - Pedro L. S. Uson Junior
- Department of Oncology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Swain S, Sahu A, Singh P, Rout S, Parida GK, Mishra PR, Agarwal K. Potential of Liver Serum Enzymes and SUVmax in Primary Tumors as Predictive Biomarkers With Correlational Evidence. Cureus 2024; 16:e58532. [PMID: 38957833 PMCID: PMC11218504 DOI: 10.7759/cureus.58532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Cancer exerts a substantial influence on the body's metabolism through varied mechanisms, instigating a metabolic reprogramming that maintains the unchecked growth and survival of cancer cells, consequently perturbing diverse metabolic parameters. The introduction of positron emission tomography-computed tomography (PET/CT), delivering detailed insights into both metabolic and morphological aspects, has brought about a revolutionary shift in modern cancer detection. Exploring the potential connection between PET-CT metabolic features and the metabolic parameters of liver enzymes in an individual can unveil novel avenues for cancer diagnosis and prognosis. Materials and methods This study conducted a retrospective analysis of patient records from our institution, covering the period from January 2021 to September 2023, focusing on individuals with various malignancies. The data included information on gender, age, clinical history, and liver serum parameters, which were compiled into tables. Additionally, inflammatory indicators such as ALT (alanine transaminase), ALP (alkaline phosphatase), total protein (TP), ALT/AST ratio, and SUVmax were collected and plotted. The study used Pearson correlation analysis to assess the relationship between each inflammatory variable and SUV (max) as determined by PET-CT. Results In breast cancer, there was a statistically significant positive correlation (R2=0.0651) between serum ALP levels and SUVmax as determined by regression analysis. Hodgkin lymphoma, on the other hand, showed a statistically significant negative correlation between the ALT-to-AST ratio (ALT/AST) and SUVmax (r = -0.45, R2 = 0.204). In non-Hodgkin lymphoma patients, total protein (TP) was negatively correlated with SUVmax (R2=-0.081, r= -0.28), while in lung cancer patients, there was a significant positive correlation with regression correlation coefficients (R2 = 0.026, 0.024, 0.024, and 0.018 for ALT/AST, TP, ALP, albumin, and ALT, respectively). Conclusion Aligning with these results, it can be a recent addition to acknowledge that both the tumor metabolic parameter (SUVmax) and the levels of liver serum enzymes exhibit a potential for predicting patient prognosis in various cancers.
Collapse
Affiliation(s)
- Sashikanta Swain
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Abhijit Sahu
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Parneet Singh
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Sipra Rout
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Girish K Parida
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Pravash R Mishra
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Kanhayalal Agarwal
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
4
|
Li X, Ye J, Wang J, Quan Z, Li G, Ma W, Zhang M, Yang W, Wang J, Ma T, Kang F, Wang J. First-in-Humans PET Imaging of KRASG12C Mutation Status in Non-Small Cell Lung and Colorectal Cancer Patients Using [ 18F]PFPMD. J Nucl Med 2023; 64:1880-1888. [PMID: 37827842 DOI: 10.2967/jnumed.123.265715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiajun Ye
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Quan
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guiyu Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenhui Ma
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingru Zhang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weidong Yang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junling Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Taoqi Ma
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Dzaye O, Cornelis FH, Kunin HS, Sofocleous CT. Advancements and Future Outlook of PET/CT-Guided Interventions. Tech Vasc Interv Radiol 2023; 26:100916. [PMID: 38071029 DOI: 10.1016/j.tvir.2023.100916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Advancements in minimally invasive technology, coupled with imaging breakthroughs, have empowered the field of interventional radiology to achieve unparalleled precision in image-guided diagnosis and treatment while simultaneously reducing periprocedural morbidity. Molecular imaging, which provides valuable physiological and metabolic information alongside anatomical localization, can expand the capabilities of image-guided interventions. Among various molecular imaging techniques, positron emission tomography (PET) stands out for its superior spatial resolution and ability to acquire quantitative data. PET has emerged as a crucial tool for oncologic imaging and plays a pivotal role in both staging and the assessment of treatment responses. Typically used in combination with computed tomography (CT) (PET/CT) and occasionally with magnetic resonance imaging MRI (PET/MRI), PET as a hybrid imaging approach offers enhanced insights into disease progression and response. In recent years, PET has also found its way into image-guided interventions, especially within the rapidly expanding field of interventional oncology. This review aims to explore the current and evolving role of metabolic imaging, specifically PET, in interventional oncology. By delving into the unique advantages and applications of PET in guiding oncological interventions and assessing response, we seek to highlight the increasing significance of this modality in the realm of interventional radiology.
Collapse
Affiliation(s)
- Omar Dzaye
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Molecular Imaging & Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francois H Cornelis
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Henry S Kunin
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
6
|
Hunt S, Zandifar A, Alavi A. Molecular imaging in management of colorectal metastases by the interventional oncologist. Int J Hyperthermia 2022; 39:675-681. [DOI: 10.1080/02656736.2021.1998657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Stephen Hunt
- Penn Image-Guided Interventions Lab, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Bogoni M, Cerci JJ, Cornelis FH, Nanni C, Tabacchi E, SchÖder H, Shyn PB, Sofocleous CT, Solomon SB, Kirov AS. Practice and prospects for PET/CT guided interventions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:20-31. [PMID: 33494585 PMCID: PMC10446123 DOI: 10.23736/s1824-4785.21.03291-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
During the past 10 years, performing real-time molecular imaging with positron emission tomography (PET) in combination with computed tomography (CT) during interventional procedures has undergone rapid development. Keeping in mind the interest of the nuclear medicine readers, an update is provided of the current workflows using real-time PET/CT in percutaneous biopsies and tumor ablations. The clinical utility of PET/CT guided biopsies in cancer patients with lung, liver, lymphoma, and bone tumors are reviewed. Several technological developments, including the introduction of new PET tracers and robotic arms as well as opportunities provided through acquiring radioactive biopsy specimens are briefly reviewed.
Collapse
Affiliation(s)
| | | | | | - Cristina Nanni
- Unit of Nuclear Medicine, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Elena Tabacchi
- Unit of Nuclear Medicine, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Heiko SchÖder
- Unit of Nuclear Medicine, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul B Shyn
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Constantinos T Sofocleous
- Unit of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen B Solomon
- Unit of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Assen S Kirov
- Unit of Molecular Imaging and Therapy Physics, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA -
| |
Collapse
|