1
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Smeets EMM, Trajkovic-Arsic M, Geijs D, Karakaya S, van Zanten M, Brosens LAA, Feuerecker B, Gotthardt M, Siveke JT, Braren R, Ciompi F, Aarntzen EHJG. Histology-Based Radiomics for [ 18F]FDG PET Identifies Tissue Heterogeneity in Pancreatic Cancer. J Nucl Med 2024; 65:1151-1159. [PMID: 38782455 DOI: 10.2967/jnumed.123.266262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [18F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. Methods: A cohort of pancreatic ductal adenocarcinoma patients (n = 29) for whom both tumor cross sections and [18F]FDG PET/CT scans were available was used to develop an [18F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [18F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Results: Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [18F]FDG PET signature, characterized by a higher SUVmean and SUVmax and second-order radiomics features, correlating with local variation. This MCT4-based [18F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients (n = 71) and identified patients with worse survival. Conclusion: Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [18F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.
Collapse
Affiliation(s)
- Esther M M Smeets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marija Trajkovic-Arsic
- German Cancer Consortium, partner site Essen, a partnership between DKFZ and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy and Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daan Geijs
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sinan Karakaya
- German Cancer Consortium, partner site Essen, a partnership between DKFZ and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy and Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Monica van Zanten
- Department of Pathology, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium, partner site Munich, a partnership between DKFZ and Technical University of Munich, Munich, Germany
- Department of Radiology, Ludwig Maximilians University, Munich, Germany; and
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens T Siveke
- German Cancer Consortium, partner site Essen, a partnership between DKFZ and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy and Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany
| | - Rickmer Braren
- Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
3
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
4
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
5
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
6
|
Cen C, Wang C, Wang S, Wen K, Liu L, Li X, Wu L, Huang M, Ma L, Liu H, Wu H, Han P. Clinical-radiomics nomogram using contrast-enhanced CT to predict histological grade and survival in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1218128. [PMID: 37731637 PMCID: PMC10507255 DOI: 10.3389/fonc.2023.1218128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Objectives Tumor grading is important for prognosis of pancreatic ductal adenocarcinoma (PDAC). In this study, we developed preoperative clinical-radiomics nomograms using features from contrast-enhanced CT (CECT), to discriminate high-grade and low-grade PDAC and predict overall survival (OS). Methods In this single-center, retrospective study conducted from February 2014 to April 2021, consecutive PDAC patients who underwent CECT and had pathologically identified grading were randomized to training (n=200) and test (n=84) cohorts for development of model to predict histological grade based on radiomics scores from CECT (HGrad). Another 42 patients were used as external validation cohort of HGrad. A nomogram (HGnom) was constructed using radiomics score, CA12-5 and smoking to predict histological grade. A second nomogram (Pnom) was constructed using radiomics score, CA12-5, TNM, adjuvant treatment, resection margin and microvascular invasion to predict OS in radical resection patients (217 of 284). Results Among 326 patients, 122 were high-grade (120 poorly differentiated and 2 undifferentiated). The HGrad yielded AUCs of 0.75 (95% CI: 0.64, 0.85) and 0.76 (95% CI: 0.60, 0.91) in test and validation cohorts. The HGnom achieved AUCs of 0.77 (95% CI: 0.66, 0.87), and the predicted grades calibrated well with actual grades (P=.13). OS was different between the grades predicted by radiomics scores (P=.01). The integrated AUC of the Pnom for predicting OS was 0.80 (95% CI: 0.75, 0.88). Conclusion Compared with the HGrad using features from CECT, the HGnom demonstrated higher performance for predicting histological grade. The Pnom helped identify patients with high survival outcome in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Chunyuan Cen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Kan Wen
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liying Liu
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Mengting Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Ling Ma
- He Kang Corporate Management (SH) Co. Ltd, Shanghai, China
| | - Huan Liu
- Advanced Application Team, GE Healthcare, Shanghai, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ramaekers M, Viviers CGA, Janssen BV, Hellström TAE, Ewals L, van der Wulp K, Nederend J, Jacobs I, Pluyter JR, Mavroeidis D, van der Sommen F, Besselink MG, Luyer MDP. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J Clin Med 2023; 12:4209. [PMID: 37445243 DOI: 10.3390/jcm12134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Radiological imaging plays a crucial role in the detection and treatment of pancreatic ductal adenocarcinoma (PDAC). However, there are several challenges associated with the use of these techniques in daily clinical practice. Determination of the presence or absence of cancer using radiological imaging is difficult and requires specific expertise, especially after neoadjuvant therapy. Early detection and characterization of tumors would potentially increase the number of patients who are eligible for curative treatment. Over the last decades, artificial intelligence (AI)-based computer-aided detection (CAD) has rapidly evolved as a means for improving the radiological detection of cancer and the assessment of the extent of disease. Although the results of AI applications seem promising, widespread adoption in clinical practice has not taken place. This narrative review provides an overview of current radiological CAD systems in pancreatic cancer, highlights challenges that are pertinent to clinical practice, and discusses potential solutions for these challenges.
Collapse
Affiliation(s)
- Mark Ramaekers
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Christiaan G A Viviers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Boris V Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Terese A E Hellström
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Lotte Ewals
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Kasper van der Wulp
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Joost Nederend
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Igor Jacobs
- Department of Hospital Services and Informatics, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Jon R Pluyter
- Department of Experience Design, Philips Design, 5656 AE Eindhoven, The Netherlands
| | - Dimitrios Mavroeidis
- Department of Data Science, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Misha D P Luyer
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| |
Collapse
|
8
|
Dinesh MG, Bacanin N, Askar SS, Abouhawwash M. Diagnostic ability of deep learning in detection of pancreatic tumour. Sci Rep 2023; 13:9725. [PMID: 37322046 PMCID: PMC10272117 DOI: 10.1038/s41598-023-36886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Pancreatic cancer is associated with higher mortality rates due to insufficient diagnosis techniques, often diagnosed at an advanced stage when effective treatment is no longer possible. Therefore, automated systems that can detect cancer early are crucial to improve diagnosis and treatment outcomes. In the medical field, several algorithms have been put into use. Valid and interpretable data are essential for effective diagnosis and therapy. There is much room for cutting-edge computer systems to develop. The main objective of this research is to predict pancreatic cancer early using deep learning and metaheuristic techniques. This research aims to create a deep learning and metaheuristic techniques-based system to predict pancreatic cancer early by analyzing medical imaging data, mainly CT scans, and identifying vital features and cancerous growths in the pancreas using Convolutional Neural Network (CNN) and YOLO model-based CNN (YCNN) models. Once diagnosed, the disease cannot be effectively treated, and its progression is unpredictable. That's why there's been a push in recent years to implement fully automated systems that can sense cancer at a prior stage and improve diagnosis and treatment. The paper aims to evaluate the effectiveness of the novel YCNN approach compared to other modern methods in predicting pancreatic cancer. To predict the vital features from the CT scan and the proportion of cancer feasts in the pancreas using the threshold parameters booked as markers. This paper employs a deep learning approach called a Convolutional Neural network (CNN) model to predict pancreatic cancer images. In addition, we use the YOLO model-based CNN (YCNN) to aid in the categorization process. Both biomarkers and CT image dataset is used for testing. The YCNN method was shown to perform well by a cent percent of accuracy compared to other modern techniques in a thorough review of comparative findings.
Collapse
Affiliation(s)
- M G Dinesh
- Department of Computer Science and Engineering, EASA College of Engineering and Technology, Coimbatore, India
| | | | - S S Askar
- Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abouhawwash
- Department of Computational Mathematics, Science and Engineering (CMSE), College of Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
Yamada R, Tsuboi J, Murashima Y, Tanaka T, Nose K, Nakagawa H. Advances in the Early Diagnosis of Pancreatic Ductal Adenocarcinoma and Premalignant Pancreatic Lesions. Biomedicines 2023; 11:1687. [PMID: 37371782 DOI: 10.3390/biomedicines11061687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is one of the most lethal human malignancies, in part because it is often diagnosed at late stages when surgery and systemic therapies are either unfeasible or ineffective. Therefore, diagnosing pancreatic cancer in earlier stages is important for effective treatment. However, because the signs and symptoms may be nonspecific and not apparent until the disease is at a late stage, the timely diagnoses of pancreatic cancer can be difficult to achieve. Recent studies have shown that selective screening and increased usage of biomarkers could improve the early diagnosis of pancreatic cancer. In this review, we discuss recent advancements in the early detection of pancreatic ductal carcinoma and precancerous lesions. These include innovations in imaging modalities, the diagnostic utility of various biomarkers, biopsy techniques, and population-based surveillance approaches. Additionally, we discuss how machine learning methods are being applied to develop integrated methods of identifying individuals at high risk of developing pancreatic disease. In the future, the overall survival of pancreatic cancer patients could be improved by the development and adoption of these new methods and techniques.
Collapse
Affiliation(s)
- Reiko Yamada
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Yumi Murashima
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Takamitsu Tanaka
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kenji Nose
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
10
|
Jiang C, Yuan Y, Gu B, Ahn E, Kim J, Feng D, Huang Q, Song S. Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis. Clin Radiol 2023:S0009-9260(23)00219-2. [PMID: 37365115 DOI: 10.1016/j.crad.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/23/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
AIM To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees. RESULTS For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results. CONCLUSIONS The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.
Collapse
Affiliation(s)
- C Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Y Yuan
- Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia
| | - B Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - E Ahn
- Discipline of Information Technology, College of Science & Engineering, James Cook University, Australia
| | - J Kim
- Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia
| | - D Feng
- Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia
| | - Q Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - S Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhang G, Bao C, Liu Y, Wang Z, Du L, Zhang Y, Wang F, Xu B, Zhou SK, Liu R. 18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery. EJNMMI Res 2023; 13:49. [PMID: 37231321 DOI: 10.1186/s13550-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The determination of pathological grading has a guiding significance for the treatment of pancreatic ductal adenocarcinoma (PDAC) patients. However, there is a lack of an accurate and safe method to obtain pathological grading before surgery. The aim of this study is to develop a deep learning (DL) model based on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) for a fully automatic prediction of preoperative pathological grading of pancreatic cancer. METHODS A total of 370 PDAC patients from January 2016 to September 2021 were collected retrospectively. All patients underwent 18F-FDG-PET/CT examination before surgery and obtained pathological results after surgery. A DL model for pancreatic cancer lesion segmentation was first developed using 100 of these cases and applied to the remaining cases to obtain lesion regions. After that, all patients were divided into training set, validation set, and test set according to the ratio of 5:1:1. A predictive model of pancreatic cancer pathological grade was developed using the features computed from the lesion regions obtained by the lesion segmentation model and key clinical characteristics of the patients. Finally, the stability of the model was verified by sevenfold cross-validation. RESULTS The Dice score of the developed PET/CT-based tumor segmentation model for PDAC was 0.89. The area under curve (AUC) of the PET/CT-based DL model developed on the basis of the segmentation model was 0.74, with an accuracy, sensitivity, and specificity of 0.72, 0.73, and 0.72, respectively. After integrating key clinical data, the AUC of the model improved to 0.77, with its accuracy, sensitivity, and specificity boosted to 0.75, 0.77, and 0.73, respectively. CONCLUSION To the best of our knowledge, this is the first deep learning model to end-to-end predict the pathological grading of PDAC in a fully automatic manner, which is expected to improve clinical decision-making.
Collapse
Affiliation(s)
- Gong Zhang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chengkai Bao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yanzhe Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zizheng Wang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Du
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yue Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Fei Wang
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - S Kevin Zhou
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| | - Rong Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
12
|
Prognostic analysis of curatively resected pancreatic cancer using harmonized positron emission tomography radiomic features. Eur J Hybrid Imaging 2023; 7:5. [PMID: 36872413 PMCID: PMC9986192 DOI: 10.1186/s41824-023-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Texture features reflecting tumour heterogeneity enable us to investigate prognostic factors. The R package ComBat can harmonize the quantitative texture features among several positron emission tomography (PET) scanners. We aimed to identify prognostic factors among harmonized PET radiomic features and clinical information from pancreatic cancer patients who underwent curative surgery. METHODS Fifty-eight patients underwent preoperative enhanced dynamic computed tomography (CT) scanning and fluorodeoxyglucose PET/CT using four PET scanners. Using LIFEx software, we measured PET radiomic parameters including texture features with higher order and harmonized these PET parameters. For progression-free survival (PFS) and overall survival (OS), we evaluated clinical information, including age, TNM stage, and neural invasion, and the harmonized PET radiomic features based on univariate Cox proportional hazard regression. Next, we analysed the prognostic indices by multivariate Cox proportional hazard regression (1) by using either significant (p < 0.05) or borderline significant (p = 0.05-0.10) indices in the univariate analysis (first multivariate analysis) or (2) by using the selected features with random forest algorithms (second multivariate analysis). Finally, we checked these multivariate results by log-rank test. RESULTS Regarding the first multivariate analysis for PFS after univariate analysis, age was the significant prognostic factor (p = 0.020), and MTV and GLCM contrast were borderline significant (p = 0.051 and 0.075, respectively). Regarding the first multivariate analysis of OS, neural invasion, Shape sphericity and GLZLM LZLGE were significant (p = 0.019, 0.042 and 0.0076). In the second multivariate analysis, only MTV was significant (p = 0.046) for PFS, whereas GLZLM LZLGE was significant (p = 0.047), and Shape sphericity was borderline significant (p = 0.088) for OS. In the log-rank test, age, MTV and GLCM contrast were borderline significant for PFS (p = 0.08, 0.06 and 0.07, respectively), whereas neural invasion and Shape sphericity were significant (p = 0.03 and 0.04, respectively), and GLZLM LZLGE was borderline significant for OS (p = 0.08). CONCLUSIONS Other than the clinical factors, MTV and GLCM contrast for PFS and Shape sphericity and GLZLM LZLGE for OS may be prognostic PET parameters. A prospective multicentre study with a larger sample size may be warranted.
Collapse
|
13
|
Duff LM, Scarsbrook AF, Ravikumar N, Frood R, van Praagh GD, Mackie SL, Bailey MA, Tarkin JM, Mason JC, van der Geest KSM, Slart RHJA, Morgan AW, Tsoumpas C. An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images. Biomolecules 2023; 13:343. [PMID: 36830712 PMCID: PMC9953018 DOI: 10.3390/biom13020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
Collapse
Affiliation(s)
- Lisa M. Duff
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew F. Scarsbrook
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Nishant Ravikumar
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Leeds, Leeds LS2 9JT, UK
| | - Russell Frood
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sarah L. Mackie
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Marc A. Bailey
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds LS2 9NS, UK
| | - Jason M. Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Justin C. Mason
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Ann W. Morgan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Charalampos Tsoumpas
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
14
|
Wei W, Jia G, Wu Z, Wang T, Wang H, Wei K, Cheng C, Liu Z, Zuo C. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images. Jpn J Radiol 2022; 41:417-427. [PMID: 36409398 PMCID: PMC9676903 DOI: 10.1007/s11604-022-01363-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To explore a multidomain fusion model of radiomics and deep learning features based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images to distinguish pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP), which could effectively improve the accuracy of diseases diagnosis. MATERIALS AND METHODS This retrospective study included 48 patients with AIP (mean age, 65 ± 12.0 years; range, 37-90 years) and 64 patients with PDAC patients (mean age, 66 ± 11.3 years; range, 32-88 years). Three different methods were discussed to identify PDAC and AIP based on 18F-FDG PET/CT images, including the radiomics model (RAD_model), the deep learning model (DL_model), and the multidomain fusion model (MF_model). We also compared the classification results of PET/CT, PET, and CT images in these three models. In addition, we explored the attributes of deep learning abstract features by analyzing the correlation between radiomics and deep learning features. Five-fold cross-validation was used to calculate receiver operating characteristic (ROC), area under the roc curve (AUC), accuracy (Acc), sensitivity (Sen), and specificity (Spe) to quantitatively evaluate the performance of different classification models. RESULTS The experimental results showed that the multidomain fusion model had the best comprehensive performance compared with radiomics and deep learning models, and the AUC, accuracy, sensitivity, specificity were 96.4% (95% CI 95.4-97.3%), 90.1% (95% CI 88.7-91.5%), 87.5% (95% CI 84.3-90.6%), and 93.0% (95% CI 90.3-95.6%), respectively. And our study proved that the multimodal features of PET/CT were superior to using either PET or CT features alone. First-order features of radiomics provided valuable complementary information for the deep learning model. CONCLUSION The preliminary results of this paper demonstrated that our proposed multidomain fusion model fully exploits the value of radiomics and deep learning features based on 18F-FDG PET/CT images, which provided competitive accuracy for the discrimination of PDAC and AIP.
Collapse
Affiliation(s)
- Wenting Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Guorong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhongyi Wu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Heng Wang
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Kezhen Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhaobang Liu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| |
Collapse
|
15
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Liu X, Hu X, Yu X, Li P, Gu C, Liu G, Wu Y, Li D, Wang P, Cai J. Frontiers and hotspots of 18F-FDG PET/CT radiomics: A bibliometric analysis of the published literature. Front Oncol 2022; 12:965773. [PMID: 36176388 PMCID: PMC9513237 DOI: 10.3389/fonc.2022.965773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To illustrate the knowledge hotspots and cutting-edge research trends of 18F-FDG PET/CT radiomics, the knowledge structure of was systematically explored and the visualization map was analyzed. Methods Studies related to 18F-FDG PET/CT radiomics from 2013 to 2021 were identified and selected from the Web of Science Core Collection (WoSCC) using retrieval formula based on an interview. Bibliometric methods are mainly performed by CiteSpace 5.8.R3, which we use to build knowledge structures including publications, collaborative and co-cited studies, burst analysis, and so on. The performance and relevance of countries, institutions, authors, and journals were measured by knowledge maps. The research foci were analyzed through research of keywords, as well as literature co-citation analysis. Predicting trends of 18F-FDG PET/CT radiomics in this field utilizes a citation burst detection method. Results Through a systematic literature search, 457 articles, which were mainly published in the United States (120 articles) and China (83 articles), were finally included in this study for analysis. Memorial Sloan-Kettering Cancer Center and Southern Medical University are the most productive institutions, both with a frequency of 17. 18F-FDG PET/CT radiomics–related literature was frequently published with high citation in European Journal of Nuclear Medicine and Molecular Imaging (IF9.236, 2020), Frontiers in Oncology (IF6.244, 2020), and Cancers (IF6.639, 2020). Further cluster profile of keywords and literature revealed that the research hotspots were primarily concentrated in the fields of image, textural feature, and positron emission tomography, and the hot research disease is a malignant tumor. Document co-citation analysis suggested that many scholars have a co-citation relationship in studies related to imaging biomarkers, texture analysis, and immunotherapy simultaneously. Burst detection suggests that adenocarcinoma studies are frontiers in 18F-FDG PET/CT radiomics, and the landmark literature put emphasis on the reproducibility of 18F-FDG PET/CT radiomics features. Conclusion First, this bibliometric study provides a new perspective on 18F-FDG PET/CT radiomics research, especially for clinicians and researchers providing scientific quantitative analysis to measure the performance and correlation of countries, institutions, authors, and journals. Above all, there will be a continuing growth in the number of publications and citations in the field of 18F-FDG PET/CT. Second, the international research frontiers lie in applying 18F-FDG PET/CT radiomics to oncology research. Furthermore, new insights for researchers in future studies will be adenocarcinoma-related analyses. Moreover, our findings also offer suggestions for scholars to give attention to maintaining the reproducibility of 18F-FDG PET/CT radiomics features.
Collapse
Affiliation(s)
- Xinghai Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Yu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Pujiao Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Cheng Gu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Guosheng Liu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yan Wu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang, ; Dandan Li,
| |
Collapse
|
17
|
Liao H, Yang J, Li Y, Liang H, Ye J, Liu Y. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Front Oncol 2022; 12:990156. [PMID: 36158647 PMCID: PMC9500296 DOI: 10.3389/fonc.2022.990156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We designed to construct one 3D VOI-based deep learning radiomics strategy for identifying lymph node metastases (LNM) in pancreatic ductal adenocarcinoma on the basis of multiphasic contrast-enhanced computer tomography and to assist clinical decision-making. Methods This retrospective research enrolled 139 PDAC patients undergoing pre-operative arterial phase and venous phase scanning examination between 2015 and 2021. A primary group (training group and validation group) and an independent test group were divided. The DLR strategy included three sections. (1) Residual network three dimensional-18 (Resnet 3D-18) architecture was constructed for deep learning feature extraction. (2) Least absolute shrinkage and selection operator model was used for feature selection. (3) Fully connected network served as the classifier. The DLR strategy was applied for constructing different 3D CNN models using 5-fold cross-validation. Radiomics scores (Rad score) were calculated for distinguishing the statistical difference between negative and positive lymph nodes. A clinical model was constructed by combining significantly different clinical variables using univariate and multivariable logistic regression. The manifestation of two radiologists was detected for comparing with computer-developed models. Receiver operating characteristic curves, the area under the curve, accuracy, precision, recall, and F1 score were used for evaluating model performance. Results A total of 45, 49, and 59 deep learning features were selected via LASSO model. No matter in which 3D CNN model, Rad score demonstrated the deep learning features were significantly different between non-LNM and LNM groups. The AP+VP DLR model yielded the best performance in predicting status of lymph node in PDAC with an AUC of 0.995 (95% CI:0.989-1.000) in training group; an AUC of 0.940 (95% CI:0.910-0.971) in validation group; and an AUC of 0.949 (95% CI:0.914-0.984) in test group. The clinical model enrolled the histological grade, CA19-9 level and CT-reported tumor size. The AP+VP DLR model outperformed AP DLR model, VP DLR model, clinical model, and two radiologists. Conclusions The AP+VP DLR model based on Resnet 3D-18 demonstrated excellent ability for identifying LNM in PDAC, which could act as a non-invasive and accurate guide for clinical therapeutic strategies. This 3D CNN model combined with 3D tumor segmentation technology is labor-saving, promising, and effective.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yanbing Liu,
| |
Collapse
|
18
|
An 18F-FDG PET/CT radiomics nomogram for differentiation of high-risk and non-high-risk patients of the International Neuroblastoma Risk Group Staging System. Eur J Radiol 2022; 154:110444. [DOI: 10.1016/j.ejrad.2022.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
|
19
|
Laino ME, Ammirabile A, Lofino L, Mannelli L, Fiz F, Francone M, Chiti A, Saba L, Orlandi MA, Savevski V. Artificial Intelligence Applied to Pancreatic Imaging: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10081511. [PMID: 36011168 PMCID: PMC9408381 DOI: 10.3390/healthcare10081511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
The diagnosis, evaluation, and treatment planning of pancreatic pathologies usually require the combined use of different imaging modalities, mainly, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Artificial intelligence (AI) has the potential to transform the clinical practice of medical imaging and has been applied to various radiological techniques for different purposes, such as segmentation, lesion detection, characterization, risk stratification, or prediction of response to treatments. The aim of the present narrative review is to assess the available literature on the role of AI applied to pancreatic imaging. Up to now, the use of computer-aided diagnosis (CAD) and radiomics in pancreatic imaging has proven to be useful for both non-oncological and oncological purposes and represents a promising tool for personalized approaches to patients. Although great developments have occurred in recent years, it is important to address the obstacles that still need to be overcome before these technologies can be implemented into our clinical routine, mainly considering the heterogeneity among studies.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: (M.E.L.); (A.A.)
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: (M.E.L.); (A.A.)
| | - Ludovica Lofino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, E.O. Ospedali Galliera, 56321 Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, 72074 Tübingen, Germany
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy
| | | | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
20
|
Liao H, Li Y, Yang Y, Liu H, Zhang J, Liang H, Yan G, Liu Y. Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics (Basel) 2022; 12:diagnostics12081915. [PMID: 36010267 PMCID: PMC9406915 DOI: 10.3390/diagnostics12081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We designed and validated the value of multiple radiomics models for diagnosing histological grade of pancreatic ductal adenocarcinoma (PDAC), holding a promise of assisting in precision medicine and providing clinical therapeutic strategies. Methods: 198 PDAC patients receiving surgical resection and pathological confirmation were enrolled and classified as 117 low-grade PDAC and 81 high-grade PDAC group. An external validation group was used to assess models’ performance. Available radiomics features were selected using GBDT algorithm on the basis of the arterial and venous phases, respectively. Five different machine learning models were built including k-nearest neighbour, logistic regression, naive bayes model, support vector machine, and random forest using ten times tenfold cross-validation. Multivariable logistic regression analysis was applied to establish clinical model and combined model. The models’ performance was assessed according to its predictive performance, calibration curves, and decision curves. A nomogram was established for visualization. Survival analysis was conducted for stratifying the overall survival prior to treatment. Results: In the training group, the RF model demonstrated the optimal predictive ability and robustness with an AUC of 0.943; the SVM model achieved the secondary performance, followed by Bayes model. In the external validation group, these three models (Bayes, RF, SVM) also achieved the top three predictive ability. A clinical model was built by selected clinical features with an AUC of 0.728, and combined model was established by an RF model and a clinical model with an AUC of 0.961. The log-rank test revealed that the low-grade group survived longer than the high-grade group. Conclusions: The multiphasic CECT radiomics models offered an accurate and noninvasive perspective to differentiate histological grade in PDAC and advantages of machine learning models including RF, SVM and Bayes were more remarkable.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Huan Liu
- GE Healthcare, Shanghai 201203, China
| | - Jiao Zhang
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining 429000, China
| | - Yanbing Liu
- College of Medical Informatics of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Correspondence:
| |
Collapse
|
21
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
22
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
23
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
24
|
Prediction for Mitosis-Karyorrhexis Index Status of Pediatric Neuroblastoma via Machine Learning Based 18F-FDG PET/CT Radiomics. Diagnostics (Basel) 2022; 12:diagnostics12020262. [PMID: 35204353 PMCID: PMC8871335 DOI: 10.3390/diagnostics12020262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate differentiation of intermediate/high mitosis-karyorrhexis index (MKI) from low MKI is vital for the further management of neuroblastoma. The purpose of this research was to investigate the efficacy of 18F-FDG PET/CT–based radiomics features for the prediction of MKI status of pediatric neuroblastoma via machine learning. A total of 102 pediatric neuroblastoma patients were retrospectively enrolled and divided into training (68 patients) and validation sets (34 patients) in a 2:1 ratio. Clinical characteristics and radiomics features were extracted by XGBoost algorithm and were used to establish radiomics and clinical models for MKI status prediction. A combined model was developed, encompassing clinical characteristics and radiomics features and presented as a radiomics nomogram. The predictive performance of the models was evaluated by AUC and decision curve analysis. The radiomics model yielded AUC of 0.982 (95% CI: 0.916, 0.999) and 0.955 (95% CI: 0.823, 0.997) in the training and validation sets, respectively. The clinical model yielded AUC of 0.746 and 0.670 in the training and validation sets, respectively. The combined model demonstrated AUC of 0.988 (95% CI: 0.924, 1.000) and 0.951 (95% CI: 0.818, 0.996) in the training and validation sets, respectively. The radiomics features could non-invasively predict MKI status of pediatric neuroblastoma with high accuracy.
Collapse
|
25
|
Kang CM. What Is the Next in Developing Model to Predict Survival Outcomes of Resected Pancreatic Cancer? Gut Liver 2021; 15:797-798. [PMID: 34782489 PMCID: PMC8593513 DOI: 10.5009/gnl210503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Chang Moo Kang
- Division of HBP Surgery, Department of Surgery, Yonsei University College of Medicine, and Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
26
|
Zeeshan MS, Ramzan Z. Current controversies and advances in the management of pancreatic adenocarcinoma. World J Gastrointest Oncol 2021; 13:472-494. [PMID: 34163568 PMCID: PMC8204360 DOI: 10.4251/wjgo.v13.i6.472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease with a mortality rate that has not significantly improved over decades. This is likely due to several challenges unique to pancreatic cancer. Most patients with pancreatic cancer are diagnosed at a late stage of disease due to the lack of specific symptoms prompting an early investigation. A small subset of patients who are diagnosed at an early stage have a better chance at survival with curative surgical resection, but most patients still succumb to the disease in a few years. The dismal overall prognosis is due to suspected micro-metastasis at an early stage. Due to this reason, there is a recent interest in treating all patients with pancreatic cancers with systemic therapy upfront (including the ones that are surgically resectable). This approach is still not the standard of care due to the lack of robust prospective data available. Recent advancements in treatment regimens of chemotherapy, radiation and immunotherapy have improved the overall short-term survival but the long-term survival still remains poor. Novel approaches in diagnosis and treatment have shown promise in clinical studies but long-term clinical data is lacking. The following manuscript presents an overview of the epidemiology, diagnosis, staging, recent advances, novel approaches and controversies in the management of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Muhammad Shehroz Zeeshan
- Gastrointestinal Section, Department of Medicine, Texas Health Harris Methodist Hospital, Fort Worth, TX 76104, United States
| | - Zeeshan Ramzan
- Gastrointestinal Section, Department of Medicine, Texas Health Harris Methodist Hospital, Fort Worth, TX 76104, United States
| |
Collapse
|