1
|
Kersting D, Borys K, Küper A, Kim M, Haubold J, Goerttler T, Umutlu L, Costa PF, Kleesiek J, Rischpler C, Nensa F, Herrmann K, Fendler WP, Weber M, Hosch R, Seifert R. Staging of prostate Cancer with ultra-fast PSMA-PET scans enhanced by AI. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-024-07060-7. [PMID: 39794510 DOI: 10.1007/s00259-024-07060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
PURPOSE PSMA-PET is a reference standard examination for patients with prostate cancer, but even using recently introduced digital PET detectors image acquisition with standard field-of-view scanners is still in the range of 20 min. This may cause limited access to examination slots because of the growing demand for PSMA-PET. Ultra-fast PSMA-PET may enhance throughput but comes at the cost of poor image quality. The aim of this manuscript is to evaluate the accuracy of AI-enhanced ultra-fast PSMA-PET for staging of patients with prostate cancer. METHODS A total number of 357 whole-body [68Ga]Ga-PSMA-11 PET datasets were included. Patients underwent two digital PET scans, one at standard and one at ultra-fast speed (table speed: 0.6-1.2 mm/s vs. 50 mm/s). A modified pix2pixHD generative adversarial network to enhance the ultra-fast images was trained with 286 datasets and evaluated with the remaining 71 datasets. The staging accuracy of ultra-fast PSMA-PET and AI-enhanced ultra-fast PET was compared with the reference standard PET separately for miTNM regions proposed by PROMISE V2.0. RESULTS The AI-network significantly improved the visual image quality and detection rate in most miTNM regions compared with the non-enhanced image data (T: 69.6% vs. 43.5%, p < 0.05; N: 46.3% vs. 27.8%, p < 0.01; M1a 64.4% vs. 47.5%, p < 0.01; M1b: 85.7% vs. 72.1%, p < 0.01). However, improvement was not significant for the M1c category (42.9 vs. 28.6%, p > 0.05). Missed lesions had a smaller SUVmax and lesion size compared with detected lesions (exemplary for N: 9.5 vs. 26.5 SUVmax; 4 vs. 10 mm). SUVmax values of lesions were significantly different in all miTNM regions between the ultra-fast and reference standard PET, but only in the T-region between the AI-enhanced and reference standard PET. CONCLUSION The AI-based image enhancement improved image quality and region detection rates by a mean of 17.9%. As the sensitivity of synthetic PET for small and low-uptake lesions was limited, a potential clinical use case could be disease monitoring in patients with high tumor volume and PSMA uptake undergoing PSMA radioligand therapy. The improvement in detection rate of distant metastases was not significant. This indicates that more training data is needed to ensure robust results also for lesions that have lower appearance frequency. Future studies on accelerated PSMA-PET seem warranted.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
| | - Katarzyna Borys
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Alina Küper
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Moon Kim
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Johannes Haubold
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Tsepo Goerttler
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Lale Umutlu
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- Department of Nuclear Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Felix Nensa
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Manuel Weber
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - René Hosch
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Mavroeidi IA, Romanowicz A, Haake T, Wienker J, Metzenmacher M, Darwiche K, Oezkan F, Bölükbas S, Stuschke M, Umutlu L, Opitz M, Nader M, Hamacher R, Siveke J, Winantea J, Fendler WP, Wiesweg M, Eberhardt WEE, Herrmann K, Theegarten D, Schuler M, Hautzel H, Kersting D. Theranostics with somatostatin receptor antagonists in SCLC: Correlation of 68Ga-SSO120 PET with immunohistochemistry and survival. Theranostics 2024; 14:5400-5412. [PMID: 39310095 PMCID: PMC11413793 DOI: 10.7150/thno.98819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Positron Emission Tomography (PET) using the somatostatin receptor 2 (SSTR2)-antagonist satoreotide trizoxetan (68Ga-SSO120) is a novel, promising imaging modality for small-cell lung cancer (SCLC), which holds potential for theranostic applications. This study aims to correlate uptake in PET imaging with SSTR2 expression in immunohistochemistry (IHC) and to assess the prognostic value of 68Ga-SSO120 PET at initial staging of patients with SCLC. Methods: We analyzed patients who underwent 68Ga-SSO120 PET/CT during initial diagnostic workup of SCLC as part of institutional standard-of-care. SSTR2 expression in IHC was evaluated on a 4-level scale and correlated with normalized standardized uptake values and tumor-to-liver ratios (SUVmax and TLRpeak) in 68Ga-SSO120 PET on a lesion level. Highest lesion SUVmax/TLRpeak per patient, SSTR2 score in IHC, M status according to TNM classification, and other parameters were analyzed for association with overall survival (OS) and time to treatment failure (TTF) by univariate, multivariate (cut-off values were identified on data for best separation), and stratified Cox regression. Results: We included 54 patients (24 men/30 women, median age 65 years, 21 M0/33 M1 according to TNM classification). In 43 patients with available surplus tumor tissue samples, hottest lesion SUVmax/TLRpeak showed a significant correlation with the level of SSTR2-expression by tumor cells in IHC (Spearman's rho 0.86/0.81, both p < 0.001; ANOVA p < 0.001). High SSTR2 expression in IHC, 68Ga-SSO120 SUVmax and TLRpeak of the hottest lesion per patient, whole-body TLRmean, MTV, TLG, M status, and serum LDH showed a significant association with inferior TTF/OS in univariate analysis. In separate multivariate Cox regression (including sex, age, M stage, and LDH) higher hottest-lesion TLRpeak showed a significant association with shorter OS (HR = 0.26, 95%CI: 0.08-0.84, p = 0.02) and SSTR2 expression in IHC with significantly shorter TTF (HR = 0.24, 95%CI: 0.08-0.71, p = 0.001) and OS (HR = 0.22, 95%CI: 0.06-0.84, p = 0.03). In total, 12 patients (22.2%) showed low (< 1), 21 (38.9%) intermediate (≥ 1 but < 2), 14 (25.9%) high (≥ 2 but < 5), and 7 (13.0%) very high (≥ 5) whole-body mean TLRmean. Conclusion: In patients with SCLC, SSTR2 expression assessed by 68Ga-SSO120 PET and by IHC were closely correlated and associated with shorter survival. More than 75% of patients showed higher whole-body 68Ga-SSO120 tumor uptake than liver uptake and almost 40% high or very high uptake, possibly paving the way towards theranostic applications.
Collapse
Affiliation(s)
- Ilektra Antonia Mavroeidi
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Romanowicz
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tristan Haake
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Wienker
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center (WTZ), University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center (WTZ), University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Filiz Oezkan
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center (WTZ), University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Servet Bölükbas
- National Center for Tumor Diseases (NCT) West, Essen, Germany
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center (WTZ), University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
- Department of Radiotherapy, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Institute of Diagnostic, Interventional Radiology and Neuroradiology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Opitz
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Institute of Diagnostic, Interventional Radiology and Neuroradiology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Jens Siveke
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jane Winantea
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center (WTZ), University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P. Fendler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E. E. Eberhardt
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
| | - Hubertus Hautzel
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - David Kersting
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Küper AT, Kersting D, Telli T, Herrmann K, Rominger A, Afshar-Oromieh A, Lopes L, Karkampouna S, Shi K, Kim M, Hadaschik B, Darr C, Umutlu L, Fendler WP, Seifert R. PSMA-PET follow-up to assess response in patients not receiving PSMA therapy: Is there value beyond localization of disease? Theranostics 2024; 14:3623-3633. [PMID: 38948055 PMCID: PMC11209722 DOI: 10.7150/thno.96738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Prostate Specific Membrane Antigen Positron Emission Tomography (PSMA-PET) is routinely used for the staging of patients with prostate cancer, but data on response assessment are sparse and primarily stem from metastatic castration-resistant prostate cancer (mCRPC) patients treated with PSMA radioligand therapy. Still, follow-up PSMA-PET is employed in earlier disease stages in case of clinical suspicion of disease persistence, recurrence or progression to decide if localized or systemic treatment is indicated. Therefore, the prognostic value of PSMA-PET derived tumor volumes in earlier disease stages (i.e., hormone-sensitive prostate cancer (HSPC) and non-[177Lu]Lu-PSMA-617 (LuPSMA) therapy castration resistant prostate cancer (CRPC)) are evaluated in this manuscript. Methods: A total number of 73 patients (6 primary staging, 42 HSPC, 25 CRPC) underwent two (i.e., baseline and follow-up, median interval: 379 days) whole-body [68Ga]Ga-PSMA-11 PET/CT scans between Nov 2014 and Dec 2018. Analysis was restricted to non-LuPSMA therapy patients. PSMA-PETs were retrospectively analyzed and primary tumor, lymph node-, visceral-, and bone metastases were segmented. Body weight-adjusted organ-specific and total tumor volumes (PSMAvol: sum of PET volumes of all lesions) were measured for baseline and follow-up. PSMAvol response was calculated as the absolute difference of whole-body tumor volumes. High metastatic burden (>5 metastases), RECIP 1.0 and PSMA-PET Progression Criteria (PPP) were determined. Survival data were sourced from the cancer registry. Results: The average number of tumor lesions per patient on the initial PET examination was 10.3 (SD 28.4). At baseline, PSMAvol was strongly associated with OS (HR 3.92, p <0.001; n = 73). Likewise, response in PSMAvol was significantly associated with OS (HR 10.48, p < 0.005; n = 73). PPP achieved significance as well (HR 2.19, p <0.05, n = 73). Patients with hormone sensitive disease and poor PSMAvol response (upper quartile of PSMAvol change) in follow-up had shorter outcome (p < 0.05; n = 42). PSMAvol in bones was the most relevant parameter for OS prognostication at baseline and for response assessment (HR 31.11 p < 0.001; HR 32.27, p < 0.001; n = 73). Conclusion: PPP and response in PSMAvol were significantly associated with OS in the present heterogeneous cohort. Bone tumor volume was the relevant miTNM region for OS prognostication. Future prospective evaluation of the performance of organ specific PSMAvol in more homogeneous cohorts seems warranted.
Collapse
Affiliation(s)
- Alina T. Küper
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Leonor Lopes
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Moon Kim
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christopher Darr
- Department of Urology and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Interventional and Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang P. Fendler
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Kersting D, Moraitis A, Sraieb M, Zarrad F, Umutlu L, Rischpler C, Fendler WP, Herrmann K, Weber M, Conti M, Fragoso Costa P, Jentzen W. Quantification performance of silicon photomultiplier-based PET for small 18F-, 68Ga- and 124I-avid lesions in the context of radionuclide therapy planning. Phys Med 2023; 114:103149. [PMID: 37778973 DOI: 10.1016/j.ejmp.2023.103149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
PURPOSE The aim of this study was to investigate conditions for reliable quantification of sub-centimeter lesions with low18F,68Ga, and124I uptake using a silicon photomultiplier-based PET/CT system. METHODS A small tumor phantom was investigated under challenging but clinically realistic conditions resembling prostate and thyroid cancer lymph node metastases (6 spheres with 3.7-9.7 mm in diameter, 9 different activity concentrations ranging from about 0.25-25 kBq/mL, and a signal-to-background ratio of 20). Radionuclides with different positron branching ratios and prompt gamma coincidence contributions were investigated. Maximum-, contour-, and oversize-based partial volume effect (PVE) correction approaches were applied. Detection and quantification performance were estimated, considering a ±30 % deviation between imaged-derived and true activity concentrations as acceptable. A standard and a prolonged acquisition time and two image reconstruction algorithms (time-of-flight with/without point spread function modelling) were analyzed. Clinical data were evaluated to assess agreement of PVE-correction approaches indicating lesion quantification validity. RESULTS The smallest 3.7-mm sphere was not visible. If the lesions were clearly observed, quantification was, except for a few cases, acceptable using contour- or oversized-based PVE-corrections. Quantification accuracy did not substantially differ between 18F, 68Ga, and 124I. No systematic differences between the analyzed reconstruction algorithms or shorter and larger acquisition times were observed. In the clinical evaluation of 20 lesions, an excellent statistical agreement between oversize- and contour-based PVE-corrections was observed. CONCLUSIONS At the lower end of size (<10 mm) and activity concentration ranges of lymph-node metastases, quantification with reasonable accuracy is possible for 18F, 68Ga, and 124I, possibly allowing pre-therapeutic lesion dosimetry and individualized radionuclide therapy planning.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Alexandros Moraitis
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany; Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | | | - Pedro Fragoso Costa
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Walter Jentzen
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Kersting D, Sandach P, Sraieb M, Wiesweg M, Metzenmacher M, Darwiche K, Oezkan F, Bölükbas S, Stuschke M, Umutlu L, Nader M, Hamacher R, Fendler WP, Wienker J, Eberhardt WEE, Schuler M, Herrmann K, Hautzel H. 68Ga-SSO-120 PET for Initial Staging of Small Cell Lung Cancer Patients: A Single-Center Retrospective Study. J Nucl Med 2023; 64:1540-1549. [PMID: 37474272 DOI: 10.2967/jnumed.123.265664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
PET imaging using the somatostatin receptor 2 (SSTR2) antagonist satoreotide trizoxetan (SSO-120, previously OPS-202) could offer accurate tumor detection and screening for SSTR2-antagonist radionuclide therapy in patients with SSTR2-expressing small cell lung cancer (SCLC). The aim of this single-center study was to investigate tumor uptake and detection rates of 68Ga-SSO-120 in comparison to 18F-FDG PET in the initial staging of SCLC patients. Methods: Patients with newly diagnosed SCLC who underwent additional whole-body 68Ga-SSO-120 PET/CT during the initial diagnostic workup were retrospectively included. The mean administered activity was 139 MBq, and the mean uptake time was 60 min. Gold-standard staging 18F-FDG PET/CT was evaluated if available within 2 wk before or after 68Ga-SSO-120 PET if morphologic differences in CT images were absent. 68Ga-SSO-120- or 18F-FDG-positive lesions were reported in 7 anatomic regions (primary tumor, thoracic lymph node metastases, and distant metastases including pleural, contralateral pulmonary, liver, bone, and other) according to the TNM classification for lung cancer (eighth edition). Consensus TNM staging (derived from CT, endobronchial ultrasound-guided transbronchial needle aspiration, PET, and brain MRI) by a clinical tumor board served as the reference standard. Results: Thirty-one patients were included, 12 with limited and 19 with extensive disease according to the Veterans Administration Lung Study Group classification. 68Ga-SSO-120-positive tumor was detected in all patients (100%) and in 90 of the 217 evaluated regions (41.5%). Thirteen patients (42.0%) had intense average 68Ga-SSO-120 uptake (region-based mean SUVmax ≥ 10); 28 patients (90.3%) had average 68Ga-SSO-120 uptake greater than liver uptake (region-based mean peak tumor-to-liver ratio > 1). In 25 patients with evaluable 18F-FDG PET, primary tumor, thoracic lymph node metastases, and distant metastases were detected in 100%, 92%, and 64%, respectively, of all investigated patients by 68Ga-SSO-120 and in 100%, 92%, and 56%, respectively, by 18F-FDG PET. 68Ga-SSO-120 PET detected additional contralateral lymph node, liver, and brain metastases in 1, 1, and 2 patients, respectively (no histopathology available), and 18F-FDG PET detected additional contralateral lymph node metastases in 3 patients (1 confirmed, 1 systematic endobronchial ultrasound-guided transbronchial needle aspiration-negative, and 1 without available histopathology). None of these differences altered Veterans Administration Lung Study Group staging. The region-based monotonic correlation between 68Ga-SSO-120 and 18F-FDG uptake was low (Spearman ρ = 0.26-0.33). Conclusion: 68Ga-SSO-120 PET offers high diagnostic precision with comparable detection rates and additional complementary information to the gold standard, 18F-FDG PET. Consistent uptake in most patients warrants exploration of SSTR2-directed radionuclide therapy.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Patrick Sandach
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marcel Wiesweg
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Filiz Oezkan
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Servet Bölükbas
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Johannes Wienker
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Ricci M, Carabellese B, Pietroniro D, Grivet Fojaja MR, De Vincentis G, Cimini A. Digital PET for recurrent prostate cancer: how the technology help. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Kersting D, Jentzen W, Jeromin D, Mavroeidi IA, Conti M, Büther F, Herrmann K, Rischpler C, Hamacher R, Fendler WP, Seifert R, Costa PF. Lesion Quantification Accuracy of Digital 90Y PET Imaging in the Context of Dosimetry in Systemic Fibroblast Activation Protein Inhibitor Radionuclide Therapy. J Nucl Med 2023; 64:329-336. [PMID: 35981898 PMCID: PMC9902858 DOI: 10.2967/jnumed.122.264338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 02/04/2023] Open
Abstract
Therapy with 90Y-labeled fibroblast activation protein inhibitors (90Y-FAPIs) was recently introduced as a novel treatment concept for patients with solid tumors. Lesion and organ-at-risk dosimetry is part of assessing treatment efficacy and safety and requires reliable quantification of tissue uptake. As 90Y quantification is limited by the low internal positron-electron pair conversion rate, the increased effective sensitivity of digital silicon photomultiplier-based PET/CT systems might increase quantification accuracy and, consequently, allow for dosimetry in 90Y-FAPI therapy. The aim of this study was to explore the conditions for reliable lesion image quantification in 90Y-FAPI radionuclide therapy using a digital PET/CT system. Methods: Two tumor phantoms were filled with 90Y solution using different sphere activity concentrations and a constant signal-to-background ratio of 40. The minimum detectable activity concentration was determined, and its dependence on acquisition time (15 vs. 30 min per bed position) and smoothing levels (all-pass vs. 5-mm gaussian filter) was investigated. Quantification accuracy was evaluated at various activity concentrations to estimate the minimum quantifiable activity concentration using contour-based and oversized volume-of-interest-based quantification approaches. A ±20% deviation range between image-derived and true activity concentrations was regarded as acceptable. Tumor dosimetry for 3 patients treated with 90Y-FAPI is presented to project the phantom results to clinical scenarios. Results: For a lesion size of 40 mm and a clinical acquisition time of 15 min, both minimum detectable and minimum quantifiable activity concentrations were 0.12 MBq/mL. For lesion sizes of greater than or equal to 30 mm, accurate quantification was feasible for detectable lesions. Only for the smallest 10-mm sphere, the minimum detectable and minimum quantifiable activity concentrations differ substantially (0.43 vs. 1.97 MBq/mL). No notable differences between the 2 quantification approaches were observed. For the investigated tumors, absorbed dose estimates with reliable accuracy were achievable. Conclusion: For lesion sizes and activity concentrations that are expected to be observed in patients treated with 90Y-FAPI, quantification with reasonable accuracy is possible. Further dosimetry studies are needed to thoroughly investigate the efficacy and safety of 90Y-FAPI therapy.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany; .,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Walter Jentzen
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Daniel Jeromin
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany;,Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee; and
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany;,Department of Medical Oncology, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P. Fendler
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany;,Department of Nuclear Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany;,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Fragoso Costa P, Jentzen W, Brahmer A, Mavroeidi IA, Zarrad F, Umutlu L, Fendler WP, Rischpler C, Herrmann K, Conti M, Seifert R, Sraieb M, Weber M, Kersting D. Phantom-based acquisition time and image reconstruction parameter optimisation for oncologic FDG PET/CT examinations using a digital system. BMC Cancer 2022; 22:899. [PMID: 35978274 PMCID: PMC9387080 DOI: 10.1186/s12885-022-09993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background New-generation silicon-photomultiplier (SiPM)-based PET/CT systems exhibit an improved lesion detectability and image quality due to a higher detector sensitivity. Consequently, the acquisition time can be reduced while maintaining diagnostic quality. The aim of this study was to determine the lowest 18F-FDG PET acquisition time without loss of diagnostic information and to optimise image reconstruction parameters (image reconstruction algorithm, number of iterations, voxel size, Gaussian filter) by phantom imaging. Moreover, patient data are evaluated to confirm the phantom results. Methods Three phantoms were used: a soft-tissue tumour phantom, a bone-lung tumour phantom, and a resolution phantom. Phantom conditions (lesion sizes from 6.5 mm to 28.8 mm in diameter, lesion activity concentration of 15 kBq/mL, and signal-to-background ratio of 5:1) were derived from patient data. PET data were acquired on an SiPM-based Biograph Vision PET/CT system for 10 min in list-mode format and resampled into time frames from 30 to 300 s in 30-s increments to simulate different acquisition times. Different image reconstructions with varying iterations, voxel sizes, and Gaussian filters were probed. Contrast-to-noise-ratio (CNR), maximum, and peak signal were evaluated using the 10-min acquisition time image as reference. A threshold CNR value ≥ 5 and a maximum (peak) deviation of ± 20% were considered acceptable. 20 patient data sets were evaluated regarding lesion quantification as well as agreement and correlation between reduced and full acquisition time standard uptake values (assessed by Pearson correlation coefficient, intraclass correlation coefficient, Bland–Altman analyses, and Krippendorff’s alpha). Results An acquisition time of 60 s per bed position yielded acceptable detectability and quantification results for clinically relevant phantom lesions ≥ 9.7 mm in diameter using OSEM-TOF or OSEM-TOF+PSF image reconstruction, a 4-mm Gaussian filter, and a 1.65 × 1.65 x 2.00-mm3 or 3.30 × 3.30 x 3.00-mm3 voxel size. Correlation and agreement of patient lesion quantification between full and reduced acquisition times were excellent. Conclusion A threefold reduction in acquisition time is possible. Patients might benefit from more comfortable examinations or reduced radiation exposure, if instead of the acquisition time the applied activity is reduced. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09993-4.
Collapse
Affiliation(s)
- Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Walter Jentzen
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Alissa Brahmer
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.,Department of Medical Oncology, University Hospital Essen, West German Cancer Center (WTZ), University Duisburg-Essen, 45147, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.,Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | | | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany. .,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| |
Collapse
|
9
|
Hosch R, Weber M, Sraieb M, Flaschel N, Haubold J, Kim MS, Umutlu L, Kleesiek J, Herrmann K, Nensa F, Rischpler C, Koitka S, Seifert R, Kersting D. Artificial intelligence guided enhancement of digital PET: scans as fast as CT? Eur J Nucl Med Mol Imaging 2022; 49:4503-4515. [PMID: 35904589 PMCID: PMC9606065 DOI: 10.1007/s00259-022-05901-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022]
Abstract
Purpose Both digital positron emission tomography (PET) detector technologies and artificial intelligence based image post-reconstruction methods allow to reduce the PET acquisition time while maintaining diagnostic quality. The aim of this study was to acquire ultra-low-count fluorodeoxyglucose (FDG) ExtremePET images on a digital PET/computed tomography (CT) scanner at an acquisition time comparable to a CT scan and to generate synthetic full-dose PET images using an artificial neural network. Methods This is a prospective, single-arm, single-center phase I/II imaging study. A total of 587 patients were included. For each patient, a standard and an ultra-low-count FDG PET/CT scan (whole-body acquisition time about 30 s) were acquired. A modified pix2pixHD deep-learning network was trained employing 387 data sets as training and 200 as test cohort. Three models (PET-only and PET/CT with or without group convolution) were compared. Detectability and quantification were evaluated. Results The PET/CT input model with group convolution performed best regarding lesion signal recovery and was selected for detailed evaluation. Synthetic PET images were of high visual image quality; mean absolute lesion SUVmax (maximum standardized uptake value) difference was 1.5. Patient-based sensitivity and specificity for lesion detection were 79% and 100%, respectively. Not-detected lesions were of lower tracer uptake and lesion volume. In a matched-pair comparison, patient-based (lesion-based) detection rate was 89% (78%) for PERCIST (PET response criteria in solid tumors)-measurable and 36% (22%) for non PERCIST-measurable lesions. Conclusion Lesion detectability and lesion quantification were promising in the context of extremely fast acquisition times. Possible application scenarios might include re-staging of late-stage cancer patients, in whom assessment of total tumor burden can be of higher relevance than detailed evaluation of small and low-uptake lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05901-x.
Collapse
Affiliation(s)
- René Hosch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany.
| | - Manuel Weber
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Nils Flaschel
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Moon-Sung Kim
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Sven Koitka
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.,Department of Nuclear Medicine, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - David Kersting
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
10
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
11
|
Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, Hermann K, Badawi RD, Cherry SR, Bradley KM, McGowan DR. New PET technologies - embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging 2021; 48:2711-2726. [PMID: 34081153 PMCID: PMC8263417 DOI: 10.1007/s00259-021-05390-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Aide
- Nuclear medicine Department, University Hospital, Caen, France.
- INSERM ANTICIPE, Normandie University, Caen, France.
| | - Charline Lasnon
- INSERM ANTICIPE, Normandie University, Caen, France
- François Baclesse Cancer Centre, Caen, France
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Irene Buvat
- Institut Curie, Université PLS, Inserm, U1288 LITO, Orsay, France
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, 94305, USA
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ramsey D Badawi
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Simon R Cherry
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Kevin M Bradley
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, Cardiff, UK
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS FT, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|