1
|
Patel KR, van der Heide UA, Kerkmeijer LGW, Schoots IG, Turkbey B, Citrin DE, Hall WA. Target Volume Optimization for Localized Prostate Cancer. Pract Radiat Oncol 2024; 14:522-540. [PMID: 39019208 PMCID: PMC11531394 DOI: 10.1016/j.prro.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To provide a comprehensive review of the means by which to optimize target volume definition for the purposes of treatment planning for patients with intact prostate cancer with a specific emphasis on focal boost volume definition. METHODS Here we conduct a narrative review of the available literature summarizing the current state of knowledge on optimizing target volume definition for the treatment of localized prostate cancer. RESULTS Historically, the treatment of prostate cancer included a uniform prescription dose administered to the entire prostate with or without coverage of all or part of the seminal vesicles. The development of prostate magnetic resonance imaging (MRI) and positron emission tomography (PET) using prostate-specific radiotracers has ushered in an era in which radiation oncologists are able to localize and focally dose-escalate high-risk volumes in the prostate gland. Recent phase 3 data has demonstrated that incorporating focal dose escalation to high-risk subvolumes of the prostate improves biochemical control without significantly increasing toxicity. Still, several fundamental questions remain regarding the optimal target volume definition and prescription strategy to implement this technique. Given the remaining uncertainty, a knowledge of the pathological correlates of radiographic findings and the anatomic patterns of tumor spread may help inform clinical judgement for the definition of clinical target volumes. CONCLUSION Advanced imaging has the ability to improve outcomes for patients with prostate cancer in multiple ways, including by enabling focal dose escalation to high-risk subvolumes. However, many questions remain regarding the optimal target volume definition and prescription strategy to implement this practice, and key knowledge gaps remain. A detailed understanding of the pathological correlates of radiographic findings and the patterns of local tumor spread may help inform clinical judgement for target volume definition given the current state of uncertainty.
Collapse
Affiliation(s)
- Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivo G Schoots
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Hall
- Froedtert and the Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Maas JA, Dobelbower MC, Yang ES, Clark GM, Jacob R, Kim RY, Cardan RA, Popple R, Nix JW, Rais-Bahrami S, Fiveash JB, McDonald AM. Prostate Stereotactic Body Radiation Therapy With a Focal Simultaneous Integrated Boost: 5-Year Toxicity and Biochemical Recurrence Results From a Prospective Trial. Pract Radiat Oncol 2023; 13:466-474. [PMID: 37268193 DOI: 10.1016/j.prro.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is increasingly used as a definitive treatment option for patients with prostate adenocarcinoma. The aim of this study was to assess the late toxicity, patient-reported quality of life outcomes, and biochemical recurrence rates after prostate SBRT with simultaneous integrated boost (SIB) targeting lesions defined by magnetic resonance imaging (MRI). METHODS AND MATERIALS Patients were eligible if they had biopsy-proven low- or intermediate-risk prostate adenocarcinoma, one or more focal lesions on MRI, and an MRI-defined total prostate volume of <120 mL. All patients received SBRT delivered to the entire prostate to a dose of 36.25 Gy in 5 fractions with an SIB to the lesions seen on MRI to 40 Gy in 5 fractions. Late toxicity was defined as any possible treatment-related adverse event occurring after 3 months from the completion of SBRT. Patient-reported quality of life was ascertained using standardized patient surveys. RESULTS A total of 26 patients were enrolled. Six patients (23.1%) had low-risk disease and 20 patients had intermediate-risk disease (76.9%). Seven patients (26.9%) received androgen deprivation therapy. Median follow-up was 59.5 months. No biochemical failures were observed. Three patients (11.5%) experienced late grade 2 genitourinary (GU) toxicity requiring cystoscopy, and 7 patients (26.9%) had late grade 2 GU toxicity requiring oral medications. Three patients (11.5%) had late grade 2 gastrointestinal toxicity characterized by hematochezia requiring colonoscopy and steroids per rectum. There were no grade 3 or higher toxicity events observed. The patient-reported quality-of-life metrics at the time of last follow-up were not significantly different than the pre-treatment baseline. CONCLUSIONS The results of this study support that SBRT to the entire prostate to a dose of 36.25 Gy in 5 fractions with focal SIB to 40 Gy in 5 fractions has excellent biochemical control and is not associated with undue late gastrointestinal or GU toxicity or long-term quality of life decrement. Focal dose escalation with an SIB planning approach may be an opportunity to improve biochemical control while limiting dose to nearby organs at risk.
Collapse
Affiliation(s)
- Jared A Maas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Michael C Dobelbower
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grant M Clark
- Department of Radiation Oncology, East Tennessee Radiation Oncology Group, Knoxville, Tennessee
| | - Rojymon Jacob
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert Y Kim
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rex A Cardan
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey W Nix
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew M McDonald
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Liu W, Loblaw A, Laidley D, Fakir H, Mendez L, Davidson M, Kassam Z, Lee TY, Ward A, Thiessen J, Bayani J, Conyngham J, Bailey L, Andrews JD, Bauman G. Imaging Biomarkers in Prostate Stereotactic Body Radiotherapy: A Review and Clinical Trial Protocol. Front Oncol 2022; 12:863848. [PMID: 35494042 PMCID: PMC9043802 DOI: 10.3389/fonc.2022.863848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria for biochemical failure. The drawbacks of this approach include lack of lesion identification, a high false-positive rate, and delay in identifying treatment failure. Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess response. Imaging findings will be correlated with prostate-specific antigen (PSA) and biopsy results, with the goal of early, non-invasive, and accurate identification of treatment failure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oncology, Division of Radiation Oncology, London Health Sciences Centre and Western University, London, ON, Canada
| | - Andrew Loblaw
- Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Laidley
- Division of Nuclear Medicine, St. Joseph's Health Centre and Western University, London, ON, Canada
| | - Hatim Fakir
- Department of Oncology and Department of Medical Biophysics, London Health Sciences Centre and Western University, London, ON, Canada
| | - Lucas Mendez
- Department of Oncology, Division of Radiation Oncology, London Health Sciences Centre and Western University, London, ON, Canada
| | - Melanie Davidson
- Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Zahra Kassam
- Department of Medical Imaging, St. Joseph's Health Care and Western University, London, ON, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Aaron Ward
- Department of Medical Biophysics, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Jonathan Thiessen
- Department of Medical Biophysics, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Jane Bayani
- Ontario Institute for Cancer Research and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Laura Bailey
- Clinical Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Joseph D Andrews
- Clinical Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Glenn Bauman
- Department of Oncology, Division of Radiation Oncology, London Health Sciences Centre and Western University, London, ON, Canada
| |
Collapse
|