1
|
Bourke M, McInerney-Leo A, Steinberg J, Boughtwood T, Milch V, Ross AL, Ambrosino E, Dalziel K, Franchini F, Huang L, Peters R, Gonzalez FS, Goranitis I. The Cost Effectiveness of Genomic Medicine in Cancer Control: A Systematic Literature Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025:10.1007/s40258-025-00949-w. [PMID: 40172779 DOI: 10.1007/s40258-025-00949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND AND OBJECTIVE Genomic medicine offers an unprecedented opportunity to improve cancer outcomes through prevention, early detection and precision therapy. Health policy makers worldwide are developing strategies to embed genomic medicine in routine cancer care. Successful translation of genomic medicine, however, remains slow. This systematic review aims to identify and synthesise published evidence on the cost effectiveness of genomic medicine in cancer control. The insights could support efforts to accelerate access to cost-effective applications of human genomics. METHODS The study protocol was registered with PROSPERO (CRD42024480842), and the review was conducted in line with Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) Guidelines. The search was run in four databases: MEDLINE, Embase, CINAHL and EconLit. Full economic evaluations of genomic technologies at any stage of cancer care, and published after 2018 and in English, were included for data extraction. RESULTS The review identified 137 articles that met the inclusion criteria. Most economic evaluations focused on the prevention and early detection stage (n = 44; 32%), the treatment stage (n = 36; 26%), and managing relapsed, refractory or progressive disease (n = 51, 37%). Convergent cost-effectiveness evidence was identified for the prevention and early detection of breast and ovarian cancer, and for colorectal and endometrial cancers. For cancer treatment, the use of genomic testing for guiding therapy was highly likely to be cost effective for breast and blood cancers. Studies reported that genomic medicine was cost effective for advanced and metastatic non-small cell lung cancer. There was insufficient or mixed evidence regarding the cost effectiveness of genomic medicine in the management of other cancers. CONCLUSIONS This review mapped out the cost-effectiveness evidence of genomic medicine across the cancer care continuum. Gaps in the literature mean that potentially cost-effective uses of genomic medicine in cancer control, for example rare cancers or cancers of unknown primary, may be being overlooked. Evidence on the value of information and budget impact are critical, and advancements in methods to include distributional effects, system capacity and consumer preferences will be valuable. Expanding the current cost-effectiveness evidence base is essential to enable the sustainable and equitable translation of genomic medicine.
Collapse
Affiliation(s)
- Mackenzie Bourke
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3053, Australia
| | - Aideen McInerney-Leo
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Tiffany Boughtwood
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia
- Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Anna Laura Ross
- Science Division, World Health Organization, Geneva, Switzerland
| | - Elena Ambrosino
- Science Division, World Health Organization, Geneva, Switzerland
| | - Kim Dalziel
- Child Health Economics Unit, School of Population and Global Health, Centre for Health Policy, University of Melbourne, MelbourneMelbourne, VIC, Australia
| | - Fanny Franchini
- Faculty of Medicine, Dentistry and Health Sciences, Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Li Huang
- Child Health Economics Unit, School of Population and Global Health, Centre for Health Policy, University of Melbourne, MelbourneMelbourne, VIC, Australia
| | - Riccarda Peters
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3053, Australia
| | - Francisco Santos Gonzalez
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3053, Australia
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3053, Australia.
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|