1
|
Laplana M, Ros-Freixedes R, Estany J, Fraile LJ, Pena RN. Whole-genome analysis of resilience based on the stability of reproduction performance during a porcine reproductive and respiratory syndrome virus outbreak in sows. Animal 2024; 18:101290. [PMID: 39226776 DOI: 10.1016/j.animal.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a very prevalent viral pathogen that can induce reproductive failure in infected sows. PRRSV infection can result in smaller litters, foetal death, late-term abortions and retarded growth of infected piglets. Not all sows respond equally to the infection partly due to genetic factors. In this study, we aimed to characterise the genetic variability of pig resilience to PRRSV infection by using a stability reproductive performance (SRP) index as a proxy of resilience. By comparing reproductive data from 183 sows, we selected 48 sows with extreme SRP values, measured as the difference in piglets lost at farrowings before and during a PRRSV outbreak. Short-read DNA fragments were sequenced from selected sows using an Illumina platform. The analysis of whole-genome sequencing information identified 16 genome regions associated with the SRP classification (cut-off P-value < 10-6). Functional evaluation of the positional candidates by gene-ontology identifiers and their participation in biological pathways were used to identify genes involved in virus entry and replication (vimentin, RAC1 and OAZ2) but also in immune responses from the host (IRF1, and IL4, IL5 and IL13). Importantly, genes related to chemokines, extracellular proteins and cell-to-cell junction integrity might contribute to placental microseparations, facilitating the trafficking of viral particles from sow to foetus that takes place during the pathogenesis of transplacental PRRSV infection. However, given the small number of animals in the study, these results shall need to be validated in larger populations.
Collapse
Affiliation(s)
- M Laplana
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - R Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - J Estany
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - L J Fraile
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - R N Pena
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Li Y, Díaz I, Martín-Valls G, Beyersdorf N, Mateu E. Systemic CD4 cytotoxic T cells improve protection against PRRSV-1 transplacental infection. Front Immunol 2022; 13:1020227. [PMID: 36798517 PMCID: PMC9928156 DOI: 10.3389/fimmu.2022.1020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major swine pathogens causing reproductive failure in sows. Although modified-live virus (MLV) vaccines are available, only partial protection against heterologous strains is produced, thus vaccinated sows can be infected and cause transplacental infection. The immune effector mechanisms involved are largely unknown. Methods The present study investigated the role of cytotoxic lymphocytes, including cytotoxic T cells (CTL), NKT, and NK cells, from blood in preventing PRRSV-1 transplacental infection in vaccinated primiparous sows (two doses vaccinated). Sows from a PRRSV-1 unstable farm were bled just before the last month of gestation (critical period for transplacental infection), then followed to determine whether sows delivered PRRSV-1-infected (n=8) or healthy (n=10) piglets. After that, functions of CTL, NKT, and NK cells in the two groups of sows were compared. Results No difference was found through cell surface staining. But upon in vitro re-stimulation with the circulating field virus, sows that delivered healthy piglets displayed a higher frequency of virus-specific CD107a+ IFN-γ-producing T cells, which accumulated in the CD4+ compartment including CD4 single-positive (CD4 SP) and CD4/CD8α double-positive (CD4/CD8α DP) subsets. The same group of sows also harbored a higher proportion of CD107a+ TNF-α-producing T cells that predominantly accumulated in CD4/CD8α double-negative (CD4/CD8α DN) subset. Consistently, CD4 SP and CD4/CD8α DN T cells from sows delivering healthy piglets had a higher virus-specific proliferative response. Additionally, in sows that delivered PRRSV-1-infected piglets, a positive correlation of virus-specific IFN-γ response with average Ct values of umbilical cords of newborn piglets per litter was observed. Conclusion Our data strongly suggest that CTL responses correlate with protection against PRRSV-1 transplacental infection, being executed by CD4 T cells (IFN-γ related) and/or CD4/CD8α DN T cells (TNF-α related).
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal, Institut de Recerca en Tecnologies Agroalimentáries (IRTA-CReSA), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Xu R, Wan J, Lin C, Su Y. Effects of Early Intervention with Antibiotics and Maternal Fecal Microbiota on Transcriptomic Profiling Ileal Mucusa in Neonatal Pigs. Antibiotics (Basel) 2020; 9:E35. [PMID: 31963653 PMCID: PMC7168243 DOI: 10.3390/antibiotics9010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate the effects of early intervention with antibiotics and maternal fecal microbiota on ileal morphology and barrier function, and transcriptomic profiling in neonatal piglets. Piglets in the amoxicillin (AM), fecal microbiota transplantation (FMT), and control (CO) groups were orally administrated with amoxicillin solution (6.94 mg/mL), maternal fecal microbiota suspension [>109 colony forming unit (CFU)/mL], and physiological saline, respectively. Compared with the CO group, early intervention with AM or FMT significantly decreased ileal crypt depth on day 7 and altered gene expression profiles in ileum on days 7 and 21, and especially promoted the expression of chemokines (CCL5, CXCL9, and CXCL11) involved in the toll-like receptor signaling pathway on day 21. FMT changed major immune activities from B cell immunity on day 7 to T cell immunity on day 21 in the ileum. On the other hand, both AM and FMT predominantly downregulated the gene expression of toll-like receptor 4 (TLR4). In summary, both early interventions modulated intestinal barrier function and immune system in the ileum with a low impact on ileal morphology and development.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Wan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhui Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Stadler J, Naderer L, Beffort L, Ritzmann M, Emrich D, Hermanns W, Fiebig K, Saalmüller A, Gerner W, Glatthaar-Saalmüller B, Ladinig A. Safety and immune responses after intradermal application of Porcilis PRRS in either the neck or the perianal region. PLoS One 2018; 13:e0203560. [PMID: 30192831 PMCID: PMC6128605 DOI: 10.1371/journal.pone.0203560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to assess safety and immune responses in gilts after intradermal application of Porcilis® PRRS in two different application sites under field conditions. Forty-four gilts were allocated to one of three groups: Gilts of group 1 (n = 10) served as non-vaccinated controls, gilts of group 2 (n = 17) were vaccinated intradermally in the neck and gilts of group 3 (n = 17) received an intradermal vaccination in the perianal region. Clinical observations, local injection site reactions and histopathologic examination of the injection site were used for safety assessments. Frequency and degree of clinical signs were not significantly different between all three groups. Minor local reactions for both vaccination groups were observed; however, at 6, 7, 8, 9 and 15 days post-vaccination (dpv), the mean injection site reaction score was significantly lower in pigs vaccinated in the perianal region. In histopathologic examination, an extended inflammatory dimension was observed more frequently in pigs vaccinated in the neck. Blood samples were analyzed to quantify the post-vaccination humoral (ELISA and virus neutralization test) and cellular (IFN-γ ELISPOT) immune responses. PRRSV-specific antibodies were present in the serum of all vaccinated animals from 14 dpv onwards, whereas all control pigs remained negative throughout the study. Neutralizing antibody titers were significantly higher in pigs vaccinated in the perianal region at 28 dpv. At 14, 21 and 28 dpv, PRRSV-specific IFN-γ secreting cells were significantly increased in both vaccination groups compared to non-vaccinated gilts. Analysis of mean numbers of PRRSV-specific IFN-γ secreting cells did not result in statistically significant differences between both vaccination groups. The results of this study indicate that the perianal region is a safe alternative application site for intradermal vaccination of gilts with Porcilis PRRS. Furthermore, the intradermal application of Porcilis PRRS induced humoral and cellular immune responses independent of the administration site.
Collapse
Affiliation(s)
- Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lena Naderer
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lisa Beffort
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Daniela Emrich
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Walter Hermanns
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
5
|
Cortey M, Arocena G, Ait-Ali T, Vidal A, Li Y, Martín-Valls G, Wilson AD, Archibald AL, Mateu E, Darwich L. Analysis of the genetic diversity and mRNA expression level in porcine reproductive and respiratory syndrome virus vaccinated pigs that developed short or long viremias after challenge. Vet Res 2018; 49:19. [PMID: 29448955 PMCID: PMC5815215 DOI: 10.1186/s13567-018-0514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/08/2018] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host’s cellular and humoral immune response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to compare several genes that encode for molecules involved in the immune response between two groups of vaccinated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequencing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT-PCR of the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.
| | - Gaston Arocena
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anna Vidal
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Yanli Li
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Allan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Laila Darwich
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| |
Collapse
|
6
|
Effect of an 88-amino-acid deletion in nsp2 of porcine reproductive and respiratory syndrome virus on virus replication and cytokine responses in vitro. Arch Virol 2018; 163:1489-1501. [PMID: 29442228 DOI: 10.1007/s00705-018-3760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Previously, a spontaneous 88-amino-acid (aa) deletion in nsp2 was associated with cell-adaptation of porcine reproductive and respiratory syndrome virus (PRRSV) strain JXM100, which arose during passaging of the highly pathogenic PRRSV (HP-PRRSV) strain JX143 in MARC-145 cells. Here, to elucidate the biological role of this deletion, we specifically deleted the region of a cDNA clone of HP-PRRSV strain JX143 (pJX143) corresponding to these 88 amino acids. The effect of the deletion on virus replication in cultured cells and transcriptional activation of inflammatory cytokines and chemokines in pulmonary alveolar macrophages (PAMs) was examined. Mutant virus with the 88-aa deletion in nsp2 (rJX143-D88) had faster growth kinetics and produced larger plaques in MARC-145 cells than the parental virus (rJX143), suggesting that the deletion enhanced virus replication in MARC-145 cells. In contrast, the overall yield of rJX143 was almost 1 log higher than that of rJX143-D88, suggesting that the 88-aa deletion in nsp2 decreased the production of infectious viruses in PAMs. Infection with the mutant virus with the 88-aa deletion resulted in increased mRNA expression of type I interferon (IFN-α and IFN-β) and chemokines genes. In addition, the mRNA expression of antiviral genes (ISG15, ISG54 and PKR) regulated by the IFN response was upregulated in PAMs infected with the mutant virus rJX143-D88. Our results demonstrate that virus-specific host immunity can be enhanced by modifying certain nsp2 epitope regions. These findings provide important insights for understanding virus pathogenesis and development of future vaccines.
Collapse
|
7
|
Yang T, Zhang F, Zhai L, He W, Tan Z, Sun Y, Wang Y, Liu L, Ning C, Zhou W, Ao H, Wang C, Yu Y. Transcriptome of Porcine PBMCs over Two Generations Reveals Key Genes and Pathways Associated with Variable Antibody Responses post PRRSV Vaccination. Sci Rep 2018; 8:2460. [PMID: 29410429 PMCID: PMC5802836 DOI: 10.1038/s41598-018-20701-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a virus susceptible to antibody dependent enhancement, causing reproductive failures in sows and preweaning mortality of piglets. Modified-live virus (MLV) vaccines are used to control PRRS in swine herds. However, immunized sows and piglets often generate variable antibody levels. This study aimed to detect significant genes and pathways involved in antibody responsiveness of pregnant sows and their offspring post-PRRSV vaccination. RNA sequencing was conducted on peripheral blood-mononuclear cells (PBMCs), which were isolated from pregnant sows and their piglets with high (HA), median (MA), and low (LA) PRRS antibody levels following vaccination. 401 differentially expressed genes (DEGs) were identified in three comparisons (HA versus MA, HA versus LA, and MA versus LA) of sow PBMCs. Two novel pathways (complement and coagulation cascade pathway; and epithelial cell signaling in H. pylori infection pathway) revealed by DEGs in HA versus LA and MA versus LA were involved in chemotactic and proinflammatory responses. TNF-α, CCL4, and NFKBIA genes displayed the same expression trends in subsequent generation post-PRRS-MLV vaccination. Findings of the study suggest that two pathways and TNF-α, CCL4, and NFKBIA could be considered as key pathways and potential candidate genes for PRRSV vaccine responsiveness, respectively.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Liwei Zhai
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yangyang Sun
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiliang Zhou
- Tianjin Ninghe Primary Pig Breeding Farm, Ninghe, 301500, Tianjin, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|