1
|
Wang P, Guo J, Zhou Y, Zhu M, Fang S, Sun F, Huang C, Zhu Y, Zhou H, Pan B, Qin Y, Ouyang K, Wei Z, Huang W, García-Sastre A, Chen Y. The C-terminal amino acid motifs of NS1 protein affect the replication and virulence of naturally NS-truncated H1N1 canine influenza virus. Emerg Microbes Infect 2024; 13:2400546. [PMID: 39221898 PMCID: PMC11404376 DOI: 10.1080/22221751.2024.2400546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated in vitro in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-β in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.
Collapse
Affiliation(s)
- Pingping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Jianing Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yefan Zhou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Min Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Senbiao Fang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People’s Republic of China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Fanyuan Sun
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Chongqiang Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Yaohui Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Huabo Zhou
- Huabo Pet Hospital, Nanning, People’s Republic of China
| | - Boyu Pan
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People’s Republic of China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
3
|
Ma J, Wu R, Xu G, Cheng Y, Wang Z, Wang H, Yan Y, Li J, Sun J. Acetylation at K108 of the NS1 protein is important for the replication and virulence of influenza virus. Vet Res 2020; 51:20. [PMID: 32093780 PMCID: PMC7038556 DOI: 10.1186/s13567-020-00747-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
Non-structural protein 1 (NS1) of influenza virus is a multifunctional protein that plays an important role in virus replication and virulence. In this study, an acetylation modification was identified at the K108 residue of the NS1 protein of H1N1 influenza virus. To further explore the function of the K108 acetylation modification of the NS1 protein, a deacetylation-mimic mutation (K108R) and a constant acetylation-mimic mutation (K108Q) were introduced into the NS1 protein in the background of A/WSN/1933 H1N1 (WSN), resulting in two mutant viruses (WSN-NS1-108R and WSN-NS1-108Q). In vitro and mouse studies showed that the deacetylation-mimic mutation K108R in the NS1 protein attenuated the replication and virulence of WSN-NS1-108R, while the constant acetylation-mimic mutant virus WSN-NS1-108Q showed similar replication and pathogenicity as the wild-type WSN virus (WSN-wt). The results indicated that acetylation at K108 of the NS1 protein has an important role in the replication and virulence of influenza virus. To further explore the potential mechanism, the type I interferon (IFN-I) antagonistic activity of the three NS1 proteins (NS1-108Q, NS1-108R, and NS1-wt) was compared in cells, which showed that the K108R mutation significantly attenuated the IFN-β antagonistic activity of the NS1 protein compared with NS1-wt and NS1-108Q. Both NS1-wt and NS1-108Q inhibited the IFN-β response activated by RIG-I CARD domain, MAVS, TBK1, and IRF3 more efficiently than the NS1-108R protein in cells. Taken together, the results indicated that acetylation at NS1 K108 is important for the IFN antagonistic activity of the NS1 protein and virulence of the influenza virus.
Collapse
Affiliation(s)
- Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujuan Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Heng'an Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinxiang Li
- Chengdu National Agricultural Science and Technology Center, Sichuan, China.
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Cui X, Ji Y, Wang Z, Du Y, Guo H, Wang L, Chen H, Zhu Q. A 113-amino-acid truncation at the NS1 C-terminus is a determinant for viral replication of H5N6 avian influenza virus in vitro and in vivo. Vet Microbiol 2018; 225:6-16. [PMID: 30322535 DOI: 10.1016/j.vetmic.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023]
Abstract
Virulence of highly pathogenic avian influenza viruses (AIV) is determined by multiple genes and their encoded proteins. In particular, the nonstructural protein 1 (NS1) of viruses is a multifunctional protein that plays an important role in type I interferon (IFN) antagonism, pathogenicity, and determining viral host range. Naturally-occurring truncation or mutation of NS1 during virus evolution attenuates viral replication and pathogenicity, but the mechanisms underlying this phenomenon remain poorly understood. In the present study, we rescued an H5N6 AIV harboring a 113-amino-acid (aa) truncated NS1 at the C-terminus that had previously naturally occurred in an H3N8 equine influenza virus (designated as rHN109 NS1/112). The replication and pathogenicity of the rescued and parental viruses were then assessed in vitro in cells and in vivo in chickens and mice. Replication of rHN109 NS1/112 virus was significantly attenuated in various cells compared to its parental virus. The attenuation of rHN109 NS1/112 virus was subsequently clarified by investigating the effects on IFN and apoptosis signaling pathways via multiple experiments. The results indicated that the 113-aa truncation of NS1 impairs viral inhibition of IFN production and enhances cellular apoptosis in avian and mammalian cells. Animal studies further indicated that replication of the rHN109 NS1/112 virus is remarkably attenuated in chickens. The results of this study improve our understanding of C-terminal region function for NS1 proteins of influenza viruses.
Collapse
Affiliation(s)
- Xiaole Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Yingying Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Haoran Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Liang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| |
Collapse
|
5
|
Koo BS, Kim HK, Song D, Na W, Song MS, Kwon JJ, Wong SS, Noh JY, Ahn MJ, Kim DJ, Webby RJ, Yoon SW, Jeong DG. Virological and pathological characterization of an avian H1N1 influenza A virus. Arch Virol 2018; 163:1153-1162. [PMID: 29368065 DOI: 10.1007/s00705-018-3730-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.
Collapse
Affiliation(s)
- Bon-Sang Koo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 30019, South Korea
| | - Woonsung Na
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 30019, South Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Chongju, 28644, South Korea
| | - Jin Jung Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Chongju, 28644, South Korea
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji Yeong Noh
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Min-Ju Ahn
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,University of Science and Technology (UST), Daejeon, 34113, South Korea.
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|